Skip to main content

The Radio Plasma Imager Investigation on the Image Spacecraft

  • Chapter

Abstract

Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry, G. H.: 1971, ‘A Low-Power Vertical-Incidence Ionosonde’, IEEE Trans. GE-9, 86–95.

    Google Scholar 

  • Bibl, K. and Reinisch, B. W.: 1978, ‘The Universal Digital Ionosonde’, Radio Sci. 13, 519–530.

    Article  ADS  Google Scholar 

  • Bougeret, J.-L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., Perche, C., Sitruik, L. and Hoang, S.: 1995, ‘Waves: The Radio and Plasma Wave Investigation on the WIND Spacecraft’, Space Sci. Rev. 71, 231–263.

    Article  ADS  Google Scholar 

  • Calvert, W., Benson, R. F., Carpenter, D. L., Fung, S. F., Gallagher, D. L., Green, J. L., Haines, D. M., Reiff, P. H., Reinisch, B. W., Smith, M. F. and Taylor, W. W. L.: 1995, ‘The Feasibility of Radio Sounding in the Magnetosphere’, Radio Sci. 30(5), 1577–1595.

    Article  ADS  Google Scholar 

  • Data Format Document for the Radio Plasma Imager: 1999, Center for Atmospheric Research, University of Massachusetts Lowell, 900 Suffolk Street, Lowell, MA.

    Google Scholar 

  • Davies, K.: 1990, Ionospheric Radio, Chapt. 8, Peter Peregrinus Ltd., London, U.K.

    Book  Google Scholar 

  • Fung, S. F. and Green, J. L.: 1996, ‘Global Imaging and Radio Remote Sensing of the Magnetosphere, Radiation Belts Models and Standards’, Geophysical Monogr. 97, AGU, Washington, D.C., 285–290.

    Article  Google Scholar 

  • Green, J. L., Fung, S. F. and Burch, J. L.: 1996, ‘Application of Magnetospheric Imaging Techniques to Global Substorm Dynamics’, Proc. Third International Conference on Substorms (ICS-3), Versailles, France, ESA SP-389, pp. 655–661.

    Google Scholar 

  • Green, J. L., Taylor, W. W. L., Fung, S. F., Benson, R. F., Calvert, W., Reinisch, B. W., Gallagher, D. L. and Reiff, P. H.: 1998, ‘Radio Remote Sensing of Magnetospheric Plasmas, Measurement Techniques in Space Plasma: Fields’, Geophys. Monogr. 103, AGU, Washington, D. C., 193–198.

    Article  Google Scholar 

  • Green, J. L. et al.: 2000, ‘Radio Plasma Imager Measurements’, Space Sci. Rev. 91, 361–389 (this issue)

    Article  ADS  Google Scholar 

  • Gurgiolo, C.: 2000, ‘The IMAGE High-Resolution Data Set’, Space Sci. Rev. 91, 461–481 (this issue)

    Article  ADS  Google Scholar 

  • Gurnett, D. A., Persoon, A. M., Randall, R. F., Odem, D. L., Remington, S. L., Averkamp, T. F., Debower, M. M., Hospodarsky, G. B., Huff, R. L., Kirchner, D. L., Mitchell, M. A., Pham, B. T., Phillips, J. R., Schinder, W. J., Sheyko, P. and Tomash, D. R.: 1995, ‘The POLAR Plasma Wave Instrument’, Space Sci. Rev. 71, 597–622.

    Article  ADS  Google Scholar 

  • Hald, A.: 1962, Statistical Theory with Engineering Applications, Chapt. 5, J. Wiley, New York.

    Google Scholar 

  • Huang, X. and Reinisch, B. W.: 1982, ‘Automatic Calculation of Electron Density Profiles from Digital Ionograms. 2. True Height Inversion of Topside Ionograms With the Profile-Fitting Method’, Radio Sci. 17(4), 837–844.

    Article  ADS  Google Scholar 

  • Issautier, K., Meyer-Vernet, N., Moncuquet, M. and Hoang, S.: 1999, ‘Quasi-Thermal Noise in a Drifting Plasma: Theory and Application to Solar Wind Diagnostic on Ulysses’, J. Geophys. Res. (in press).

    Google Scholar 

  • Jackson, J. E.: 1969, ‘The Reduction of Topside Ionograms from the Bottomside and Topside’, J. Atmos. Terr. Phys. 27, 917–941.

    Google Scholar 

  • Kelso, J. M.: 1964, Radio Ray Propagation in the Ionosphere, Chapt. 2, McGraw-Hill, New York.

    Google Scholar 

  • Kraus, J. D.: 1988, Antennas, Ch. 5, McGraw Hill, New York.

    Google Scholar 

  • Lund, E. J., Labelle, J. and Treumann, R. A.: 1995, ‘On Quasi-Thermal Noise Fluctuations Near the Plasma Frequency on the Outer Plasmasphere: A Case Study’, J. Geophys. Res. 99, 23651–23659.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N. and Perche, C.: 1989, ‘Toolkit for Antennae and Thermal Noise Near the Plasma Frequency’, J. Geophys. Res. 94, 2405.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Hoang, S. and Moncuquet, M.: 1993, ‘Bernstein Waves in the Io Torus: a Novel Kind of Electron Temperature Sensor’, J. Geophys. Res. 98, 21163–21176.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Moncuquet, M. and Hoang, S.: 1995, ‘Temperature Inversion in the Io Plasma Torus’, Icarus 116, 202–213.

    Article  ADS  Google Scholar 

  • Meyer-Vernet, N., Hoang, S., Issautier, K., Maksimovic, M., Manning, R., Moncuquet, M. and Stone, R.: 1998, ‘Measuring Plasma Parameters with Thermal Noise Spectroscopy’, in E. Borovsky and R. Pfaff (eds), Geophysical Monograph 103: Measurements techniques in Space Plasmas, pp. 205–210.

    Google Scholar 

  • Moncuquet, M., Meyer-Vernet, N., Bougeret, J. L., Manning, R., Perche, C. and Kaiser, M. L.: 1995, ‘WIND Passes Through the Outer Plasmasphere: Plasma Diagnosis from the Quasi-Thermal Noise Spectrum Measured by the Waves Experiment’, Supp. to Eos 76, 17, 221.

    Google Scholar 

  • Patenaude, J., Bibl, K. and Reinisch, B. W.: 1973, ‘Direct Digital Graphics, the Display of Large Data Fields’, American Laboratory, pp. 95–101.

    Google Scholar 

  • Poole, A. W. V: 1985, ‘Advanced Sounding 1, the FMCW Alternative’, Radio Sci. 20, 1609–1620.

    Article  ADS  Google Scholar 

  • Rawer, K. and Suchy, K.: 1967, ‘Radio Observations of the Ionosphere’, in S. Flügge (ed.), Encyclopedia of Physics, XLIX/2, Geophysics III/2, Sect. 7, Springer-Verlag, Berlin.

    Google Scholar 

  • Reinisch, B. W., Buchau, J. and Weber, E. J.: 1987, ‘Digital Ionosonde Observations of the Polar Cap F Region Convection’, Physica Scripta 36, 372–377.

    Article  ADS  Google Scholar 

  • Reinisch, B. W.: 1996, ‘Modern Ionosondes, in Modern Ionospheric Science’, in H. Kohl, R. Rüster and K. Schlegel (eds), European Geophysical Society, 37191 Katlenburg-Lindau, ProduServ GmbH Verlagsserie, Berlin, Germany, pp. 440–458.

    Google Scholar 

  • Reinisch, B. W., Haines, D. M., Bibl, K., Galkin, I., Huang, X., Kitrosser, D. F., Sales, G. S. and Scali, J. L.: 1997, ‘Ionospheric Sounding in Support of OTH Radar’, Radio Sci. 32(4), 1681–1694.

    Article  ADS  Google Scholar 

  • Reinisch, B. W., Sales, G. S., Haines, D. M., Fung, S. F. and Taylor, W. W. L.: 1999, ‘Radio Wave Active Doppler Imaging of Space Plasma Structures: Angle-of-Arrival, Wave Polarization, and Faraday Rotation Measurements with RPI’, Radio Sci. 34(6), 1513–1524.

    Article  ADS  Google Scholar 

  • Rood, R. B. and Stobie, J. G.: 1993, ‘Data Assimilation and EOSDIS’, NASA Internal Report.

    Google Scholar 

  • Shawhan, S. D.: 1970, ‘The Use of Multiple Receivers to Measure the Wave Characteristics of Very-Low-Frequency Noise in Space’, Space Sci. Rev. 10, 689–736.

    Article  ADS  Google Scholar 

  • Yeh, K. C., Chao, H. Y. and Lin, K. H.: 1999, ‘A Study of the Generalized Faraday Effect in Several Media’, Radio Sci. 34(1), 139–153.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reinisch, B.W. et al. (2000). The Radio Plasma Imager Investigation on the Image Spacecraft. In: Burch, J.L. (eds) The Image Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4233-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4233-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5837-7

  • Online ISBN: 978-94-011-4233-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics