Skip to main content

Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set

  • Chapter
Molecular Ecology of Aquatic Communities

Part of the book series: Developments in Hydrobiology ((DIHY,volume 138))

Abstract

Analysis of the biogeographic distributions of bacteria has been limited by potential biases inherent in the isolations required for classical taxonomy and by the time required for phylogenetic analyses. We have attempted to circumvent both of these limitations by using denaturing gradient gel electrophoresis (DGGE) to resolve the products of polymerase chain reaction (PCR) amplifications of mixed template DNA isolated from microbial communities. DGGE separates DNA fragments based on their denaturation characteristics, which vary with the nucleotide sequence of the fragment. The banding patterns in the electropherograms were then subjected to similarity analysis using pattern matching and band comparison software. Replication experiments tested the robustness of band patterns within and between gels. Samples were collected from the Central Arctic Ocean basin during April of 1995 on the SCICEX 95 cruise of the USS Cavalla. One hundred samples collected from a depth of 59 m are the focus of this biogeographical analysis. The band identification algorithm of the software identified between 12 and 30 bands (operational taxonomic units, OTUs) per sample (mean: 21.5) with minimal editing. This number approximately doubled with more extensive editing. Four OTUs seemed to be common to most samples. The samples grouped into five major clusters with similarities greater than approximately 80%. Twenty nine samples in one of these clusters were in two branches with internal similarities greater than approximately 90%. These samples had relatively nondescript banding patterns (numerous bands with roughly equal intensity). Another cluster contained 15 samples with distinctive banding patterns dominated by one or two intense bands. These samples were collected in the same general area of the Arctic Ocean (Canada Basin) and may reflect a community response to local environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bio-Rad Inc., 1992. Molecular Analyst fingerprinting and fingerprinting plus software instruction manual, version 1.0. Bio-Rad Inc. Hercules, CA.

    Google Scholar 

  • DeLaca, T., B. Coakley, T. Boyd & D. Stockwell, 1996. Cruise Report for the SCICEX95 Mission on-board the USS Cavalla. Arctic Research Consortium of the U.S. Inc., Univ. of Alaska, Fairbanks, AK.

    Google Scholar 

  • DeLong, E. F, 1992. Archaea in coastal marine environments. Proc. natn. Acad. Sci. U.S.A. 89: 5685–5689.

    Article  CAS  Google Scholar 

  • DeLong, E., D. Franks & A. Alldredge, 1993. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38: 924–934.

    Article  Google Scholar 

  • DeLong, E. F., K. Y. Wu, B. B. Prezelin & R. V. M. Jovine, 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695–697.

    Article  PubMed  CAS  Google Scholar 

  • Don, R. H., P. T. Cox, B. J. Wainwright, K. Baker & J. S. Mattick, 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic acids Res. 19: 4008.

    Article  PubMed  CAS  Google Scholar 

  • Erlich, H., D. Gelfand & J. Sninsky, 1991. Recent advances in the polymerase chain reaction. Science 252: 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Farrelly, V.,F. A. Rainey & E. Stackebrandt, 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. envir. Microbiol. 61: 2798–2801.

    Google Scholar 

  • Ferguson, R. L., E. N. Buckley & A. V. Palumbo, 1984. Response of marine bacteria to differential filtration and confinement. Appl. envir. Microbiol. 47: 49–55.

    CAS  Google Scholar 

  • Ferris, M., G. Muyzer & D. M. Ward, 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. envir. Microbiol. 62: 340–346.

    CAS  Google Scholar 

  • Fuhrman, J., K. McCallum & A. A. Davis, 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. envir. Microbiol. 59: 1294–1302.

    CAS  Google Scholar 

  • Giovannoni, S., T. Britschgi, C. L. Moyer & K. G. Field, 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Guay, C. K. & K. K. Falkner, 1997. Barium as a tracer of Arctic halocline and river waters, Deep Sea Res. II 44: 1543–1569.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T., 1994. Relationship between thymidine metabolism, bacterioplankton community metabolic capabilities, and sources of organic matter. Microb. Ecol. 28: 117–131.

    Article  CAS  Google Scholar 

  • Liu, W-T, T. L. Marsh, H. Cheng & L. J. Forney, 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. envir. Microbiol. 63: 4516–4522.

    CAS  Google Scholar 

  • Magurran, A. E., 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, 179 pp.

    Google Scholar 

  • Murray, A. E., 1994. Community fingerprint analysis: a molecular method for studying marine bacterioplankton diversity. M.A. Thesis, Department of Biology, San Francisco State University. San Francisco, 128 pp.

    Google Scholar 

  • Murray, A. E., J. T. Hollibaugh & C. Orrego, 1996. Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl. envir. Microbiol. 62: 2676–2680.

    CAS  Google Scholar 

  • Muyzer, G., E. C. D. Waal & A. G. Uitterlinden, 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. envir. Microbiol. 59: 695–700.

    CAS  Google Scholar 

  • Muyzer, G., A. Teske, C. O. Wirsen & H. W. Jannasch, 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by dentaur-ing gradient gel electrophoresis of 16S rDNA fragments. Arch. Mikrobiol. 164: 165–172.

    CAS  Google Scholar 

  • Myers, R. M., S. G. Fischer, L. S. Lerman & T. Maniatis, 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131–3145.

    Article  PubMed  CAS  Google Scholar 

  • Pedros-Alio, C., 1993. Diversity of bacterioplankton. Trends Ecol. Evol. 8: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach, A. L., J. Giver, G. S. Wickham & N. R. Pace, 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. envir. Microbiol. 58: 3417–3418.

    CAS  Google Scholar 

  • Riemann, L., L. B. Fandino, G. F. Steward, D. C. Smith, H. W. Ducklow & F. Azam, 1998. Variability of bacterial community composition in the Arabian Sea during the 1995 JGOFS program. EOS 79: OS 68.

    Google Scholar 

  • Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis & H. A. Erlich, 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    Article  PubMed  CAS  Google Scholar 

  • Santegoeds, C. M., S. C. Nold & D. M. Ward, 1996. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Appl. envir. Microbio. 62: 3922–3928.

    CAS  Google Scholar 

  • Suzuki, M. T. & S. J. Giovannoni, 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. envir. Microbiol. 62: 625–630.

    CAS  Google Scholar 

  • Ward, D. M., R. Weiler & M. M. Bateson, 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65.

    Article  PubMed  CAS  Google Scholar 

  • Wawer, C. & G. Muyzer, 1995. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of (NiFe) hydrogenase gene fragments. Appl. envir. Microbiol. 61: 2203–2210.

    CAS  Google Scholar 

  • Wawer, C., H. Ruggerberg, G. Meyer & G. Muyzer, 1995. A simple and rapid electrophoresis method to detect sequence variation in PCR-amplified DNA fragments. Nucleic Acids Res. 23: 4928–4929.

    Article  PubMed  CAS  Google Scholar 

  • Wawer, C., M. S. M. Jetten & G. Muyzer, 1997. Genetic diversity and expression of the NiFe hydrogenase large subunit gene of Desulfovibrio spp in environmental samples. Appl. envir. Microbiol. 63: 4360–4369.

    CAS  Google Scholar 

  • Wheeler, P. A., M. Gosselin, E. Sherr, D. Thibault, D. L. Kirchman, R. Benner & T. E. Whitledge, 1996. Active cycling of organic carbon in the central arctic ocean. Nature 380: 697–699.

    Article  CAS  Google Scholar 

  • Wheeler, P. A., J. M. Watkins & R. L. Hansing, 1997. Nutrients, organic carbon and organic nitrogen in the upper water column of the Arctic Ocean: implications for the sources of dissolved organic carbon. Deep Sea Res. II. 44: 1571–1592.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. P. Zehr M. A. Voytek

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrari, V.C., Hollibaugh, J.T. (1999). Distribution of microbial assemblages in the Central Arctic Ocean Basin studied by PCR/DGGE: analysis of a large data set. In: Zehr, J.P., Voytek, M.A. (eds) Molecular Ecology of Aquatic Communities. Developments in Hydrobiology, vol 138. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4201-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4201-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5827-8

  • Online ISBN: 978-94-011-4201-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics