Skip to main content

The Role of Protein Structure in Surface Tension Kinetics

  • Chapter
From Clone to Clinic

Part of the book series: Developments in Biotherapy ((DIBI,volume 1))

Abstract

Surface tension kinetics were measured for five model proteins (superoxide dismutase, cytochrome-c, myoglobin, lysozyme and ribonuclease-A) using the Wilhelmy Plate method. These data were correlated to both the stability and hydrophobicity of each protein. At low bulk concentrations, surface tension kinetics reflected the conformational stability of the protein; while at higher concentrations, surface tension kinetics were more strongly correlated with the effective hydrophobicity of the protein. The solvent accessible areas of nonpolar groups in relation with the experimental results were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Norde, “Adsorption of Proteins from Solution at the Solid-Liquid Interface”, Adv. Colloid and Interface Sci., 25(1986), 267–340.

    Article  CAS  Google Scholar 

  2. J. D. Andrade, ed. “Surface and Interfacial Aspects of Biomedical Polymers: Vol.2. Protein Adsorption”, Plenum Press, 1985.

    Book  Google Scholar 

  3. S. Nakai and E. Li-Chan, eds. Hydrophobic Interactions in Food Systems, CRC Press, 1988.

    Google Scholar 

  4. T. J. Richmond and F. M. Richards, “Packing of α-Helices: Geometrical Constraints and Contact Areas”, J. Mol. Biol., 119(1978) 537–553.

    Article  PubMed  CAS  Google Scholar 

  5. T. A. Horbett, “Molecular Origin of the Surface Activity of Proteins”, Protein Engineering, 2(1988), 3, 172–174.

    Article  PubMed  CAS  Google Scholar 

  6. S. Damodaran and K. B. Song, “Kinetics of Adsorption of Proteins at Interfaces: Role of Protein Conformation in Diffusional Adsorption”, Biochim. Biophys. Acta, 954(1988), 253–264.

    Article  PubMed  CAS  Google Scholar 

  7. J. D. Andrade, J. N. Herron, V. Hlady and D. G. Horsley, “Simulation of Protein Adsorption: The Denaturation Correlation”, Croatica Chemica Acta, 60(1987), 3, 495–503.

    CAS  Google Scholar 

  8. D. Eisenberg and A. D. MacLachlan, “Solvation Energy in Protein Folding”, Nature, 319(1986), 199–203.

    Article  PubMed  CAS  Google Scholar 

  9. A. Katti, Y. F. Maa and Cs. Horvath, “Protein Surface Area and Retention in Hydrophobic Interaction Chromatograpgy”, Chromatograpia, 24(1987), 646–650.

    Article  Google Scholar 

  10. D. Horsley, J. N. Herron, V. Hlady and J. D. Andrade, “Human and Hen Lysozyme Adsorption” in Proteins at Interfaces, edited by J. L. Brash and T. A. Horbett, ACS, 1987.

    Google Scholar 

  11. J. T. Kellis, K. Nyberg, D. Sali and A. R. Fersht, “Contribution of Hydrophobic Interactions to Protein Stability”, Nature, 333(1988), 23, 784–786.

    Article  PubMed  CAS  Google Scholar 

  12. The Catalog of Molecular Probes, Inc., Eugene, OR 97402.

    Google Scholar 

  13. Protein Data Bank Newsletter, No. 46, 1988. Brookhaven National Laboratory, Upton, NY 11973.

    Google Scholar 

  14. C. N. Pace, B. A. Shirley and J. A. Thomson, “Measuring the Conformational Stability of a Protein” in Protein Structure: A Practical Approach edited by T.E. Creighton, IRL Press, 1989.

    Google Scholar 

  15. J. A. De Feijter and J. Benjamins, “Adsorption Kinetics of Proteins at the Air-Water Interface” in Food Emulsions and Foams edited by E. Dickinson, Royal Society of Chemistry, London, 1986, 72–85.

    Google Scholar 

  16. A.-P. Wei, “The Structure of Model Proteins and Their Behavior at the Air-Water Interface”, M.S. Thesis, University of Utah, March, 1990.

    Google Scholar 

  17. K. Hamaguchi, “Studies on Protein Denaturation by Surface Chemical Method”, J. Biochem., 42, 449–459(1955).

    CAS  Google Scholar 

  18. E. F. Roth, D. Elbaum, R. M. Bookchin and R. L. Nagel, “The Conformational Requirements for the Mechanical Precipitation of Hemoglobins and Other Mutants”, Blood, 48(1976), 2, 265–271.

    PubMed  CAS  Google Scholar 

  19. A. Kato and K. Yutani, “Correlation of the Surface Properties with Conformational Stabilities of Wild-type and Six Mutant Tryptophan Synthase α-subunits Substituted at the Same Position”, Protein Engineering, 2(1988), 2, 153–156.

    Article  PubMed  CAS  Google Scholar 

  20. T. L. Donaldson, E. F. Boonstra and J. M. Hammond, “Kinetics of Protein Denaturation at Gas-Liquid Interfaces”, J. Colloid and Interface Sci., 74(1980), 2, 441–450.

    Article  CAS  Google Scholar 

  21. A. Kato and S. Nakai, “Hydrophobicity Determined by a Fluorescence Probe Method and Its Correlation with Surface Properties of Proteins”, Biochim. Biophys. Act. 624(1980), 13–20.

    Article  CAS  Google Scholar 

  22. D. R. Absolom, W. Zingg and A. W. Neumann, “Protein Adsorption to Polymer Particles: Role of Surface Properties”, J. Biomed. Mater. Res., 21(1987), 161–171.

    Article  PubMed  CAS  Google Scholar 

  23. S. C. Goheen and A. Stevens, “New Techniques for Separating Proteins in Hydrophobic Interaction HPLC”, Bio Techniques, Jan/Feb, 1985, 48–50.

    Google Scholar 

  24. D. L. Gooding, M. N. Schmuck and K. M. Gooding, “Analysis of Proteins with New, Mildly Hydrophobic High Performance Liquid Chromatograpgy Packing Materials”, J. Chromatography, 196(1984), 107–114.

    Google Scholar 

  25. Y. Kato, T. Kitamura and T. Hashimoto, “High-Performance Hydrophobic Interaction Chromatography of Proteins”, J. Chromatography, 266(1983), 49–54.

    Article  CAS  Google Scholar 

  26. J. T. Fausnaugh, L. A. Kennedy and F. E. Regnier, “Comparison of Hydrophobic Interaction and Reversed-Phase Chromatography of Proteins”, J. Chromatography, 317(1984), 141–155.

    Article  CAS  Google Scholar 

  27. R. H. Ingraham, S. Y. M. Lau, A. K. Tanejan and R. S. Hodges, “Denaturation and the Effects of Temperature on Hydrophobic-Interaction of and Reversed-Phase High-Performance Liquid Chromatography of Proteins”, J. Chromatography., 327(1985), 77–92.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wei, AP., Herron, J.N., Andrade, J.D. (1990). The Role of Protein Structure in Surface Tension Kinetics. In: Crommelin, D.J.A., Schellekens, H. (eds) From Clone to Clinic. Developments in Biotherapy, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3780-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3780-5_38

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5683-0

  • Online ISBN: 978-94-011-3780-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics