Skip to main content

Shear Wave Velocities of Glacio-Marine Sediments: Barents Sea

  • Chapter
Shear Waves in Marine Sediments

Abstract

Shear wave velocities were computed for surficial, glacio-marine sediments of the Barents Sea using three methods; Hamilton’s equations, the Biot-Stoll model, and the Bryan-Stoll model. Comparisons are made between the model predictions and thein situdata. The predictions from the Biot-Stoll and the Bryan-Stoll models are in excellent agreement with thein situdata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akal, T., “Sea floor effects on shallow-water acoustic propagation,” In:Bottom-Interacting Ocean AcousticsW.A. Kupennan and F.B. Jensen, Plenum Press, New York, 557–575 (1980).

    Chapter  Google Scholar 

  • American Society for Testing and MaterialsProcedures for Testing Soils:ASTM, Philadelphia, PA, Committee D-18, 4th Edition, 540 p. (1964).

    Google Scholar 

  • D. Bjorlykke, B. Bue and A. Elverhoi, “Quaternary sediments in the northwestern part of the Barents Sea and their relationship to the underlying Mesozoic bedrock,”Sedimentology 25:227–246 (1978).

    Article  Google Scholar 

  • B.A. Brunson and R.K. Johnson, “Laboratory measurements of shear wave attenuation in saturated sands,”Journal Acoustical Society America 68:1371–1375 (1980).

    Article  Google Scholar 

  • G.M. Bryan and R.D. Stoll, “The dynamic shear modulus of marine sediments,”Journal Acoustical Society America 83:2159–2164 (1988).

    Article  Google Scholar 

  • A. Elverhoi and A. Solheim, 1983Physical environment western Barents Sea 1:1 500 000: Surface sediment distribution: Oslo, Norway, Norsk Polarinstitutt Skrifter Nr. 179, 20 pp. (1983).

    Google Scholar 

  • F. Gassman, “Über die elastizität poröser medien,”Vierteljahrsschr. Naturforsch. Ges. ZĂĽrich 96:1–23 (1951).

    Google Scholar 

  • E.L. Hamilton, “Elastic properties of marine sediments,”Journal Geophysical Research 76:579–604 (1971).

    Article  Google Scholar 

  • E.L. Hamilton, “Prediction of deep-sea sediment properties: State-of-the-art,” In:Deep-Sea Sediments: Physical and Mechanical PropertiesA.L. Inderbitzen, ed., Plenum Press, New York, 1–43 (1974).

    Chapter  Google Scholar 

  • Y. Herman, “Topography of the Arctic Ocean,” In:Marine Geology and Oceanography of the Arctic SeasHerman, Y., ed., Springer-Verlag, New York, 73–81 (1974).

    Chapter  Google Scholar 

  • C.W. Holland and B.A. Brunson, “ The Biot-Stoll sediment model: an environmental assessment,”Journal Acoustical Society America 84:1437–1443 (1988).

    Article  Google Scholar 

  • J.E. Matthews, “Shear wave velocity measurements in marine sediments,” Geo-Mar. Lett.2:215–217 (1982).

    Article  Google Scholar 

  • E.J. Molinelli and B.A. Brunson, “PHYSED: Physical Sediment Model Software,” Technical Manual, Planning System, Inc. (1985).

    Google Scholar 

  • P.R. Ogushwitz, “Applicability of the Biot theory. I. Low-porosity materials,”Journal Acoustical Society America 77:429–440 (1985).

    Article  Google Scholar 

  • M.D. Richardson, E. Muzi, L. Troiano, and B. Miaschi, “Sediment shear waves: a comparison ofin situand laboratory measurements,” In:The Microstructure of Fine-Grained Sediments - From Mud to ShaleR.H. Bennett, et al., eds., Springer-Verlag, New York, 403–415 (1991).

    Chapter  Google Scholar 

  • F.P. Shepard, “Nomenclature based on sand-silt-clay ratios,”Journal Sedimentary Petrology 24:151–158 (1954).

    Google Scholar 

  • R.D. Stoll and T.K. Kan, “Reflection of acoustic waves at a water-sediment interface,”Journal Acoustical Society America 70:149–156 (1981).

    Article  Google Scholar 

  • U.S. Naval Oceanographic OfficeHandbook of Oceanographic Tables:NAVOCEANO Special Publication No. SP-68, 302–318 (1966).

    Google Scholar 

  • T.O. Vorren, M. Hald, and E. Lebesbye, “Late Cenozoic environments of the Barents Sea,”Paleoceanography 3:601–612 (1988).

    Article  Google Scholar 

  • P.L. Wright, “Recent sediments of the southwestern Barents Sea,”Marine Geology 16:51–81 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Breeding, S.K., Dunn, D.A., Orsi, T.H. (1991). Shear Wave Velocities of Glacio-Marine Sediments: Barents Sea. In: Hovem, J.M., Richardson, M.D., Stoll, R.D. (eds) Shear Waves in Marine Sediments. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3568-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3568-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5581-9

  • Online ISBN: 978-94-011-3568-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics