Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 208))

Abstract

Flotation kinetics is briefly introduced and its history is reviewed. Main theoretical approaches are discussed, and the kinetic models are presented in detail. The application of flotation kinetics to modeling and simulation of the circuits is shortly surveyed, then some industrial results are used to show how the models fit to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbiter, N., and Harris, C.C. (1962) Flotation kinetics, in D.W. Fuerstenau (ed.) Froth Flotation, AIME, New York, pp. 215–246.

    Google Scholar 

  2. Ek, C. (1968) Contribution à l’étude cinétique de la flottation, Collection des Publications de la Faculté des Sciences Appliquées de l’Université de Liège 6, 3–61.

    Google Scholar 

  3. Weiss, N.L. (1985) SME Mineral Processing Handbook, SME-AIME, New York.

    Google Scholar 

  4. Arbiter, N., Harris, C.C., and Yap, R.F. (1968) A hydrodynamic approach to flotation scale-up, Proceedings VIIIth Intern. Miner. Process. Congress (Leningrad), paper D-19.

    Google Scholar 

  5. Agar, G.E. (1985) The optimization of flotation circuit design from laboratory rate data, Proceedings XVth Intern. Miner. Process. Congress (Cannes), 2, pp. 100–111.

    Google Scholar 

  6. Kalapudas, R. (1985) A study of scaling-up of laboratory batch flotation data to industrial size flotation, ibid. 2, pp. 112–121.

    Google Scholar 

  7. Jameson, G.J., Nam, S., and Moo-Young, M. (1977) Physical factors affecting recovery rates in flotation, Miner. Sci. Engng. 9, 103–118.

    Google Scholar 

  8. Schulze, H.J. (1984) Physico-chemical Elementary Processes in Flotation, Elsevier, Amsterdam; see also Schulze, in this volume.

    Google Scholar 

  9. Niemi, A. (1966) On the dynamics of a pneumatic flotation cell, Acta Polytechn. Scan., Chem. incl. Metall.Series 49.

    Google Scholar 

  10. Niemi, A. (1966) A study of dynamic and control properties of industrial flotation processes, ibid. 48.

    Google Scholar 

  11. Rao, S.R. (1974) Surface forces in flotation, Miner. Sci. Engng. 6, 45–53.

    Google Scholar 

  12. Laskowski, J. (1974) Particle-bubble attachment in flotation, ibid. 6, 223–235.

    Google Scholar 

  13. Derjaguin, B.V., and Dukhin, S.S. (1961) Theory of flotation of small and medium-size particles, Bull. IMM 651, 221–246.

    Google Scholar 

  14. Harris, C.C., and Rimmer, H.W. (1966) Study of a two-phase model of the flotation process, Trans. IMM Series C, 153–162

    Google Scholar 

  15. Tomlinson, H.S., and Fleming, M.G. (1963) Etudes cinétiques de flottation, Proceedings VIth Intern. Miner. Process. Congress (Cannes), 677–691.

    Google Scholar 

  16. Garcia-Zuniga, H. (1935) The efficiency obtained by flotation is an exponential function of time, Boletin Minero de la Sociedad National de Minero 47, Santiago, 83–86.

    Google Scholar 

  17. Beloglazov, K.F. (1939) Kinetics of flotation process, Tsvetnye Metally 9, 70–76.

    Google Scholar 

  18. Schuhmann, R. (1942) Flotation kinetics I -Methods for steady-state study of flotation problems, J. Phys. Chem. 46, 891–902.

    Article  Google Scholar 

  19. Gaudin, A.M., Schumann, R., and Schlechten, A.W. (1942) Flotation kinetics II -The effect of size on the behaviour of galena particles, ibid. 46, 902–910.

    Google Scholar 

  20. Sutherland, K.L. (1948) Physical chemistry of flotation: Part II: Kinetics of the flotation process, ibid. 52, 394–424.

    Google Scholar 

  21. Arbiter, N. (1951) Flotation rates and flotation efficiency, Min. Engng. 3, 791–796.

    Google Scholar 

  22. Morris, T.M. (1951) Discussion of ref. [21], ibid. 3, 991–992.

    Google Scholar 

  23. Ludt, R.W., and Dewitt, C.C. (1949) The flotation of copper silicate from silica, Trans. AIME (Mining) 184, 49–51.

    Google Scholar 

  24. Morris, T.M. (1952) Measurement and evaluation of the rate of flotation as a function of particle size, Min. Engng. 4, 794–798.

    Google Scholar 

  25. Hukki, R.T. (1953) Discussion of ref. [24], ibid. 5, 1122–1124.

    Google Scholar 

  26. Debruyn, P.L., and Modi, H.J. (1956) Particle size and flotation rate of quartz, ibid. 8, 415– 419.

    Google Scholar 

  27. Horst, W.R., and Morris, T.M. (1956) Can flotation rates be improved ?, Engng. Min. J. 157(October), 81–83.

    Google Scholar 

  28. Huber-Panu, H. (1956) Beiträge zur Kinetik der Flotation, Revue de Métallurgie (Bucarest) 1, 113–120.

    Google Scholar 

  29. Huber-Panu, H., and Georgescu, B. (1959) Sur les équations cinétiques des indices techniques de la flottation, ibid. 2, 189–211.

    Google Scholar 

  30. Huber-Panu, H., and Georgescu, B. (1961) Untersuchungen über den Einfluss der Belüftung auf die Flotation-kinetik, ibid. 6, 253–267.

    Google Scholar 

  31. Ek, C. (1967) Interprétation de la cinétique de flottation d’un mineral sulfuré de cuivre, Industrie Chimique Beige, 36e Congrès de Chimie Industrielle, Bruxelles, 2, 1–5.

    Google Scholar 

  32. Bushell, C.H.G. (1962) Kinetics of flotation, Trans. AIME (Mining) 222, 266–278.

    Google Scholar 

  33. Jowett, A., and Safvi, S.M.M. (1960) Refinements in methods of determining flotation rates, ibid. 212, 351–357.

    Google Scholar 

  34. Harris, C.C., Jowett, A., and Ghosh, S.K. (1963) Analysis of data from continuous flotation tests, ibid. 227, 444–447.

    Google Scholar 

  35. Jowett, A. (1966) Gangue mineral contamination of froth, Brit. Chem. Engng. 11, 330–333.

    Google Scholar 

  36. Jancarek, J. (1964) Ein Beitrag zur Theorie der Flotationsgeschwindigkeit, Bergakademie 4–5, 257–263.

    Google Scholar 

  37. Kakovskii, I.A., Grebnev, A.N., and Silina, E.I. (1961) The relationship between the floatability of mineral particles of various sizes, their structure and the consumption of collectors, Tsvetnye Metally 34( August), 7–17.

    Google Scholar 

  38. Imaizumi, T., and Inoue, T. (1963) Considératons cinétiques sur la flottation à la mousse, Proceedings VIth Int. Miner. Process. Congress (Cannes), pp. 699–715.

    Google Scholar 

  39. Loveday, B.K. (1966) An investigation into the kinetics of froth flotation, Ph. D. Thesis, University of Natal.

    Google Scholar 

  40. Loveday, B.K. (1966) Analysis of froth flotation kinetics, Trans. IMM 65, 219–225.

    Google Scholar 

  41. Inoue, T., and Imaizumi, T. (1968) Some aspects of the flotation kinetics, Proceedings VIIIth Intern. Miner. Process. Congress (Leningrad), paper S-15.

    Google Scholar 

  42. Haynman, V.J. (1975) Fundamental model of flotation kinetics, Proceedings Xlth Intern. Miner. Process. Congress (Cagliari), pp. 537–559.

    Google Scholar 

  43. Huber-Panu, H., Ene-Danalache, E., and Cojocariu, D.G. (1976) Mathematical models of batch and continuous flotation, in M.C. Fuerstenau (ed.) Flotation, AIME, New York, pp. 675–724.

    Google Scholar 

  44. Kapur, P.C., and Mehrotra, S.P. (1989) Modelling of flotation kinetics and design of optimum flotation circuits, in K.V.S. Sastry and M.C. Fuerstenau (eds.) Challenges in Mineral Processing, AIME, New York, pp. 300–322.

    Google Scholar 

  45. Mika, T.S., and Fuerstenau, D.W. (1968) A microscopic model of the flotation process, Proceedings VIIIth Intern. Miner. Process. Congress (Leningrad), paper S-4.

    Google Scholar 

  46. Dowling, E.C., Klimpel, R.R., and Aplan, F.F. (1985) Model discrimination in the flotation of a porphyry copper ore, Miner. Metall. Process. 2, 87–101.

    Google Scholar 

  47. Kelsall, D.F. (1961) Application of probability assessment of flotation systems, Trans. IMM 70, 191–204.

    Google Scholar 

  48. Meyer, W.C., and Klimpel, R.R. (1984) Rate limitations in froth flotation, Trans AIME (Mining) 274, 1852–1858.

    Google Scholar 

  49. Bull, W.R. (1966) The rates of flotation of mineral particles in sulphide ores, Austr. IMM Process. 220 (December), 69–78.

    Google Scholar 

  50. Agar, G.E., and Barrett, J.J. (1983) The use of flotation rate data to evaluate reagents, CIM Bull. 76(851), 157–162.

    Google Scholar 

  51. Agar, G.E. (1987) Simulation in mineral processing, in B. Yarar and Z.M. Dogan (eds.) Mineral Processing Design, NATO ASI Series E, no. 122, pp. 268–287.

    Chapter  Google Scholar 

  52. Mehrotra, S.P., and Kapur, P.C. (1975) The effects of particle size and feed rate on the flotation rate distribution in a continuous cell, Int. J. Miner. Process. 2, 15–28.

    Article  Google Scholar 

  53. Klimpel, R., and Hansen, R. (1981) Some factors influencing kinetics in sulfide flotation,SME-AIME, Preprint 81–14.

    Google Scholar 

  54. Laplante, A.R., Toguri, J.M., and Smith, H.W. (1983) The effect of air flow rate on the kinetics of flotation. Part 1: the transfer of material from the slurry to the froth, Int.J. Miner. Process. 11, 203–219.

    Article  Google Scholar 

  55. Laplante, A.R., Smith, H.W., and Toguri, J.M. (1983) The effect of air flow rate on the kinetics of flotation. Part 2: the transfer of material from the froth over the cell lip, ibid. 11, 221–234.

    Google Scholar 

  56. Laplante, A.R., Smith, H.W., and Toguri, J.M. (1984) The effect of air flow rate on the kinetics of flotation. Part 3: selectivity, ibid. 12, 285–295.

    Google Scholar 

  57. Kaya, M., and Laplante, A.R. (1985) Investigation of batch and continuous flotation kinetics in a modified Denver laboratory cell, Proceedings 24th CIM Conf., paper 18.4.

    Google Scholar 

  58. Ahmed, N., and Jameson, G.J. (1985) The effect of bubble size on the rate of flotation of fine particles, Int.J. Miner. Process. 14, 195–215.

    Article  Google Scholar 

  59. Spears, D.R., and Jordan, C.E. (1989) The effect of turbulence on the flotation rate of galena when using fine bubbles, in S. Chander and R.R. Klimpel (eds.) Advances in Coal and Mineral Processing using Flotation, SME, Littleton, pp. 77–84.

    Google Scholar 

  60. Klimpel, R.R., Hansen, R.D., Mayer, W.C., and Nimerick, K.H. (1979) Laboratory characterisation of the influence of reagent changes on coal flotation, SME-AIME, Preprint 79–11.

    Google Scholar 

  61. Klimpel, R.R. (1980) Selection of chemical reagents for flotation, SME-AIME, Preprint 80–34.

    Google Scholar 

  62. Klimpel, R.R. (1988) Methods of improving the economic performance of industrial scale mineral flotation circuits, SME-AIME, Preprint 88–171.

    Google Scholar 

  63. Agar, G.E., Styles, G.H., Lyons, B.G., and Kipkie, W.B. (1987) Selection of rock depressants based on laboratory kinetic studies, CIM Bull. 80(907), 45–51.

    Google Scholar 

  64. Marin, G., and Molina, E. (1988) Characterization of collectors through flotation rate data, in S.H. Castro Flores and J. Alvarez Moisan (eds.) Froth Flotation, Elsevier, Amsterdam, pp. 329–340.

    Google Scholar 

  65. Hosten, C., and Tezcan, A. (1990) The influence of frother type on the flotation kinetics of a massive copper sulphide ore, Minerals Engng. 3, 637–640.

    Article  Google Scholar 

  66. Ball, B., Kapur, P.C., and Fuerstenau, D.W. (1970) Prediction of grade-recovery curves from a flotation kinetic model, Trans. AIME (Mining) 247, 263–269.

    Google Scholar 

  67. Morris, T.M., and Edwards, R.M. (1964) Analog computers find application in control of flotation circuits, Min. Engng. 16(8), 67–69.

    Google Scholar 

  68. Faulkner, B.P. (1966) Computer control improves metallurgy at Tennessee Copper’s flotation plant, ibid. 18(11), 53–57.

    Google Scholar 

  69. Cooper, H.R. (1966) Feedback process control of mineral flotation. Part I: Development of a model for froth flotation, Trans. AIME (Mining) 235, 439–446.

    Google Scholar 

  70. Agar, G.E., Stratton-Crawley, R., and Bruce, T.J. (1980) Optimisation the design of flotation circuits, CIM Bull. 73(824), 173–181.

    Google Scholar 

  71. Agar, G.E., and Kipkie, W.B. (1978) Predicting locked cycle flotation test results from batch data, ibid. 71(799), 119–125.

    Google Scholar 

  72. Bourassa, M., Barbery, G., Broussaud, A., and Conil, P. (1988) Flotation kinetics scale-up: comparison laboratory batch test to pilot plant processing, in E. Forssberg (ed.) Proceedings XVIth Int. Miner. Process. Congress, Elsevier, Amsterdam, pp. 579–588.

    Google Scholar 

  73. Barbery, G., Bourassa, M., and Dionne, L. (1988) Mise à l’échelle des circuits de flottation, Ind. Miner.-Mines et Carrières -Les Techniques 70, 8–14.

    Google Scholar 

  74. Vedrine, H., Broussaud, A., Conil, P., and De Matos, C.S. (1990) Modélisation de la cinétique de flottation d’un minerai sulfuré polymétallique, Ind. Miner.-Mines et Carrières -Les Techniques 72, 79–87.

    Google Scholar 

  75. Lewis, F.M., and Morris, T.M. (1962) Analysis of operating flotation plants. Part 1: Operating data from a sulfide flotation plant, the London mill, in D.W.Fuerstenau (ed.) Froth Flotation, AIME, New York, pp. 455–481.

    Google Scholar 

  76. Ek, C. (1970) Cinétique de flottation -Etudes de laboratoire -Essais industries, Rudy, 18(3–4), 113–121.

    Google Scholar 

  77. Forssberg, K.S.E., Frykfors, C.O., and Palsson, B.J. (1982) Study of the kinetics of flotation in a bulk flotation circuit for galena and sphalerite , Proceedings XlVth Int. Miner. Process. Congress (Toronto), vol. IV, paper 16.

    Google Scholar 

  78. Frew, J.A. (1982) Variation of flotation rate coefficients in zinc cleaning circuits, Int. J. Miner. Process. 9, 173–189.

    Article  Google Scholar 

  79. Phelps Dodge, Ajo mill (1966), personal communication.

    Google Scholar 

  80. Davis, W.J.N. (1964) The development of a mathematical model of the lead flotation circuit at the Zinc Corporation Ltd., Aus. IMM Proceedings 212, 61–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ek, C. (1992). Flotation Kinetics. In: Mavros, P., Matis, K.A. (eds) Innovations in Flotation Technology. NATO ASI Series, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2658-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2658-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5175-0

  • Online ISBN: 978-94-011-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics