Skip to main content

Effects of microbial activity on the hydrochemistry and sedimentology of Lake Logipi, Kenya

  • Conference paper
Saline Lakes V

Part of the book series: Developments in Hydrobiology ((DIHY,volume 87))

Abstract

Lake Logipi is a saline soda and alkaline lake which marks the northern termination of the Suguta River drainage system. It also receives waters from streams, possible seepage from Lake Turkana, and hot springs. Present hydrochemistry and sedimentology is controlled by numerous factors including seasonal variations, composition of incoming waters, water depth and, above all, bacterial activity. Given the scarcity of Ca2+ and Mg2+ in the lake waters, bacterial activity seems to intensify the alkalinization of the waters which inhibits the deposition of organic matter and leads to the genesis of a poorly organic, zeolitic mud that reaches 1.5 m in tickness in the deepest part of the lake. This black layer may be overlaid with thin crusts of trona and halite which prograde over the basin from its southern bank when the lake is drying out and which are dissolved in the lake waters during the rainy season.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosworth, W., 1989. Basin and range style tectonics in east Africa. J. Afr. Earth Sci. 8: 191–201.

    Article  Google Scholar 

  • Castanier, S., 1987. Microbiogéologie: processus et modalités de la carbonatogenèse microbienne. State Doctorate Thesis, University of Nantes, France, 541 pp.

    Google Scholar 

  • Castanier, S., A. Maurin & J.-P. Perthuisot, 1988. Les Cugnites: carbonates amorphes de Ca et Mg, précurseurs possibles de la dolomite. C. r. Acad. Sci., Paris, 306,II: 1231–1235.

    CAS  Google Scholar 

  • Eugster, H. P., 1967. Hydrous sodium silicates from Lake Magadi, Kenya. Contr. Mineral. Petrol. 22: 1–31.

    Article  Google Scholar 

  • Eugster, H. P., 1970. Chemistry and origin of the brines of Lake Magadi, Kenya. Mineral. Soc. Amer. Spec. Paper 3: 215–235.

    Google Scholar 

  • Gwynne, M. D., 1969. The South Turkana Expedition. Scientific Papers I. Preliminary report on the 1968 season. Geogr. J. 135: 331–342.

    Article  Google Scholar 

  • Hungate, R. E., 1969. A roll tube method for cultivation of strict anaerobes. In Norris and Ribbons (eds), Methods in Microbiology, Vol. 3B, Academic Press, London and New York: 117–132.

    Google Scholar 

  • Lambiase, J. J. & W. Bosworth, 1991. Structural Controls on Sedimentation in Continental rifts. Geol. Soc. Amer. Bull., in press.

    Google Scholar 

  • Maglione, G., 1974. Géochimie des évaporites et silicates néoformés en milieu continental confiné. Les dépressions interdunaires du Tchad, Afrique. State Doctorate Thesis, University P. & M. Curie, Paris, 334 pp.

    Google Scholar 

  • Marty, D., 1981. Distribution of different anaerobic bacteria in Arabian Sea sediments. Mar Biol. 63: 277–281.

    Article  Google Scholar 

  • Marty, D. & J. E. Garcin, 1987. Présence de bactéries méthanogènes méthylotropes dans les sédiments profonds du détroit de Makassar (Indonésie). Oceanol. Acta 10: 249–253.

    Google Scholar 

  • McCrady, M. H., 1918. Tables for rapid interpretation of fermentative tube results. Can. J. Publi. Health, 9: 201–216.

    Google Scholar 

  • Oppenheimer, C. H. & C. E. Zobell, 1952. The growth and viability of sixty three species of marine bacteria as influenced by hydrostatic pressure. J. mar. Res. 11: 10–18.

    Google Scholar 

  • Ottman, J. M., 1960. Essai de détermination qualitative et quantitative de quelques constituants de la matière organique dans un sédiment marin. Revue Geogr. Phys. Geol. Dynam., Paris, 3,1: 49–52.

    Google Scholar 

  • Rodier, J., 1984. L’;analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer. Dunod, Paris: 564 pp.

    Google Scholar 

  • Schöpf, J. W. & M. R. Walter, 1983. Archean Microfossils: New Evidence of Ancient Microbes. In Schoph (ed.), Earth’s Earliest Biosphere. Its origin and evolution. Princeton University Press, Princeton: 214–289.

    Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenylhypochlorite method. Limnol. Oceanogr.: 14–779.

    Google Scholar 

  • Zajic, J. E., 1969. Microbial biogeochemistry. Academic Press, New York & London, 247 pp.

    Google Scholar 

  • Zins-Pawlas, M.-P., 1988. Géochimie de la silice dans les saumures et les milieux évaporitiques. Doctorate Thesis, University of Strasbourg, France, 200 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stuart H. Hurlbert

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Castanier, S., Bernet-Rollande, MC., Maurin, A., Perthuisot, JP. (1993). Effects of microbial activity on the hydrochemistry and sedimentology of Lake Logipi, Kenya. In: Hurlbert, S.H. (eds) Saline Lakes V. Developments in Hydrobiology, vol 87. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2076-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2076-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4921-4

  • Online ISBN: 978-94-011-2076-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics