Skip to main content

Phenotypic and genetic aspects of host cell invasion by Salmonella species

  • Chapter
Book cover Molecular Mechanisms of Bacterial Virulence

Part of the book series: Developments in Plant Pathology ((DIPP,volume 3))

  • 286 Accesses

Abstract

Salmonella species are enteric pathogens that successfully infect a host by crossing the epithelial cell barrier of the small bowel and subsequently invade the deeper tissue of the host. The events that occur at the epithelial surface of host cells during Salmonella entry have been the subject of considerable study in animal models and in cell culture. The development of in vitro tissue culture models, which successfully reproduce the interactions that occur between bacteria and host cells during invasion, has been invaluable in evaluating the contribution of bacterial and host cell factors in Salmonella entry. Tissue culture experiments have shown that only actively growing bacteria are capable of invading mammalian cells, while the host cell response is characterized by cytoskeletal changes that are accompanied by alterations in calcium ion flux and host cell protein phosphorylation. Bacterial growth in both low-oxygen and high-osmolarity conditions seem to induce the expression of proteins, which influence the ability of Salmonella to enter cells. Loci necessary for bacterial entry into mammalian cells have been identified using genetic techniques. It is not yet clear whether these genes encode structural or regulatory elements. Currently, work is underway to identify the host cell signal pathway affected by microbial invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

EGF:

Epidermal Growth Factor

LPS:

Lipopolysaccharide

MDCK:

Madin-Darby Canine Kidney

References

  • Carter P and Collins F (1974) The route of enteric infection in normal mice. J Exp Med 139: 1189–1203

    Article  PubMed  CAS  Google Scholar 

  • Carter PB (1975) Spread of enteric fever bacilli from the intestinal lumen. In: Schlessinger D (ed.) Microbiology-1975. (pp.182–187) American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Dowman JE and Meynell GG (1970) Pleiotropic effects of derepressed bacterial sex factors on colicinogeny and cell wall structure. Mol Gen Genet 109: 57–68

    Article  PubMed  CAS  Google Scholar 

  • Elsinghorst EA, Baron LS and Kopecko DJ (1989) Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli. Proc Natl Acad Sci USA 86: 5173–5177

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Dombroski DM and Merrick JM (1990) Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. Infect Immun 58: 2014–2016

    PubMed  CAS  Google Scholar 

  • Finlay BB and Falkow S (1988) Comparison of the invasion strategies used by Salmonella choleraesuis, Shigella flexneri, and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 70: 1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Gumbiner B and Falkow S (1988) Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol 107: 221–230

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Heffron F and Falkow S (1989) Epithelial cell surfaces induce Salmonella proteins required for bacterial adherence and invasion. Science 243: 940–943

    Article  PubMed  CAS  Google Scholar 

  • Finlay BB, Starnbach MN, Francis CL, Stocker BAD, Chatfield S, Dougan G and Falkow S (1988) Identification and characterization of Tnpho A mutants of Salmonella that are unable to pass through a polarized MDCK epithelial cell monolayer. Mol Microbiol 2: 757–766

    Article  PubMed  CAS  Google Scholar 

  • Francis CL, Ryan TA, Jones BD, Smith SJ and Falhow S (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature (London) 364: 639–642

    Article  CAS  Google Scholar 

  • Francis CL, Starnbach MN and Falkow S (1992) Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol 6: 3077–3087

    Article  PubMed  CAS  Google Scholar 

  • Galan JE and Curtiss R, III (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86: 6383–6387

    Article  PubMed  CAS  Google Scholar 

  • Galan JE and Curtiss R, III (1990) Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun 58: 1879–1885

    PubMed  CAS  Google Scholar 

  • Galan JE and Curtiss R, III (1991) Distribution of the invA,-B,-C, and-D genes of Salmonella typhimurium among other Salmonella serovars: inv A mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect Immun 59: 2901–2908

    PubMed  CAS  Google Scholar 

  • Galan JE, Ginocchio C and Costeas P (1992a) Molecular and functional characterization of the Salmonella invasion gene inv A: homology of InvA to members of a new protein family. J Bacteriol 174: 4338–4349

    PubMed  CAS  Google Scholar 

  • Galan JE, Pace J and Hayman MJ (1992b) Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature (London) 357: 588–589

    Article  CAS  Google Scholar 

  • Giannella RA, Formal SB, Dammin GJ and Collins H (1973a) Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum. J Clin Invest 52: 441–453

    Article  PubMed  CAS  Google Scholar 

  • Giannella RA, Washington O, Gemski P and Formal SB (1973b) Invasion of HeLa cells by Salmonella typhimurium: A model for study of invasiveness of Salmonella. J Infect Dis 128: 69–75

    Article  PubMed  CAS  Google Scholar 

  • Ginocchio C, Pace J and Galan JE (1992) Identification and molecular characterization of a Salmonella typhimurium gene involved in triggering the internalization of Salmonellae into cultured epithelial cells. Proc Natl Acad Sci USA 89: 5976–5980

    Article  PubMed  CAS  Google Scholar 

  • Gulig PA (1990) Virulence plasmids of Salmonella typhimurium and other salmonellae. Microb Pathog 8: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Gulig PA and Curtiss R, III (1987) Plasmid-associated virulence of Salmonella typhimurium. Infect Immun 55: 2891–2901

    PubMed  CAS  Google Scholar 

  • Hackett J, Kotlarski I, Mathan V, Francki K and Rowley D (1986) The colonization of Peyer’s patches by a strain of Salmonella typhimurium cured of the cryptic plasmid. J Infect Dis 153: 1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Heffernan EJ, Fierer J, Chikami G and Guiney D (1987) Natural history of oral Salmonella dublin infection in BALB/c mice: effect of an 80-kilobase-pair plasmid on virulence. J Infect Dis 155: 1254–1259

    Article  PubMed  CAS  Google Scholar 

  • Hohmann AW, Schmidt G and Rowley D (1978) Intestinal colonization and virulence of Salmonella in mice. Infect Immun 22: 763–770

    PubMed  CAS  Google Scholar 

  • Jones BD, Lee CA and Falkow S (1992) Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60: 2475–2480

    PubMed  CAS  Google Scholar 

  • Jones GW, Rabert DK, Svinarich DM and Whitfield HJ (1982) Association of adhesive, invasive, and virulent phenotypes of Salmonella typhimurium with autonomous 60-megadalton plasmids. Infect Immun 38: 476–486

    PubMed  CAS  Google Scholar 

  • Jones GW, Richardson LA and Uhlman D (1981) The invasion of HeLa cells by Salmonella typhimurium: Reversible and irreversible bacterial attachment and the role of bacterial motility. J Gen Microbiol 127: 351–360

    PubMed  CAS  Google Scholar 

  • Khoramian FT, Harayama S, Kutsukake K and Pechere JC (1990) Effect of motility and chemotaxis on the invasion of Salmonella typhimurium into HeLa cells. Microb Pathog 9: 47–53

    Article  Google Scholar 

  • Kihlstrom E and Edebo L (1976) Association of viable and inactivated Salmonella typhimurium 395 MS and MR10 with HeLa cells. Infect. Immun. 14: 851–857

    PubMed  CAS  Google Scholar 

  • Kihlstrorn E and Nilsson L (1977) Endocytosis of Salmonella typhimurium 395 MS and MR 10 by HeLa cells. Acta Path Microbiol Scand Sect B 85: 322–328

    Google Scholar 

  • Kohbata S, Yokoyama H and Yabuuchi E (1986) Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer’s patches in ligated ileal loops: An ultrastructural study. Microbiol Immunol 30: 1225–1237

    PubMed  CAS  Google Scholar 

  • Lee CA and Falkow S (1990) The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA 87: 4304–4308

    Article  PubMed  CAS  Google Scholar 

  • Lee CA, Jones BD and Falkow S (1992) Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci USA 89: 1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Leung KY and Finlay BB (1991) Intracellular replication is essential for the virulence of Salmonella typhimurium. Proc Natl Acad Sci USA 88: 11470–11474

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Ezaki T, Miura H, Matsui K and Yabuuchi (1988) Intact motility as a Salmonella typhi Invasion-related factor. Infect Immun 56: 1967–1973

    PubMed  CAS  Google Scholar 

  • Manoil C and Beckwith J (1985) Tnpho A: a transposon probe for protein export signals. Proc Natl Acad Sci USA 82: 8129–8133

    Article  PubMed  CAS  Google Scholar 

  • Mroczenski-Wildey MJ, Di Fabio JL and Cabello FC (1989) Invasion and lysis of HeLa cell monolayers by Salmonella typhi: the role of lipopolysaccharide. Microbiol Path 6: 143–152

    Article  CAS  Google Scholar 

  • Owen RL and Ermak TH (1990) Structural specializations for antigen uptake and processing in the digestive tract. Springer Semin Immunopathol 12: 139–152

    Article  PubMed  CAS  Google Scholar 

  • Owen RL and Jones AL (1974) Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66: 189–203

    PubMed  CAS  Google Scholar 

  • Pruss RM and Herschman HR (1977) Variants of 3T3 cells lacking mitogenic response to epidermal growth factor. Proc Natl Acad Sci USA 74: 3918–3921

    Article  PubMed  CAS  Google Scholar 

  • Rozengurt E (1986) Early signals in the mitogenic response. Science 234: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Rubin RH and Weinstein L (1977) Salmonellosis: Microbiologic, Pathologic, and Clinical Features. Stratton Intercontinental Medical Book Corporation, New York

    Google Scholar 

  • Schiemann DA and Shope SR (1991) Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle 407 epithelial and mouse peritoneal cells in vitro and repression of a major outer membrane protein. Infect Immun 59: 437–440

    PubMed  CAS  Google Scholar 

  • Schneider CA, Lim RW, Terwilliger E and Herschman HR (1986) Epidermal growth factornonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA. Proc Natl Acad Sci USA 83: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Simons K and Fuller SD (1985) Cell surface polarity in epithelia. Annu Rev Cell Biol 1: 243–288

    Article  PubMed  CAS  Google Scholar 

  • Sprinz H, Landy M, Gaines S and Edsall G (1956) Experimental typhoid fever in chimpanzees. III. Pathogenesis. Fed Proc 15: 614–615

    Google Scholar 

  • Takeuchi A (1967) Electron microscope studies of experimental salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Path 50: 109–136

    PubMed  CAS  Google Scholar 

  • Tomita T and Kanegasaki (1982) Enhanced phagocytic response of macrophages to bacteria by physical impact caused by bacterial motility or centrifugation. Infect Immun 38: 865–870

    PubMed  CAS  Google Scholar 

  • Turnbull PCB and Richmond JE (1978) A model of Salmonella enteritis: The behaviour of Salmonella enteriditis in chick intestine studied by light and electon microscopy. Br J Exp Path 59: 64–75

    CAS  Google Scholar 

  • Worton KJ, Candy DCA, Wallis TS, Clarke GJ, Osborne MP, Haddon SJ and Stephen J (1989) Studies on early association of Salmonella typhimurium with intestinal mucosa in vivo and in vitro: relationship to virulence. J Med Microbiol 29: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Yabuuchi E, Ikedo M and Ezaki T (1986) Invasiveness of Salmonella typhi strains in HeLa S3 monolayer cells. Microbiol Immunol 30: 322–328

    Google Scholar 

  • Yokoyama H, Ikedo M, Kohbata S, Ezaki T and Yabuuchi E (1987) An ultrastructural study of HeLa cell invasion with Salmonella typhi GIFU 10007. Microbiol Immunol 31: 1–11

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, B.D., Falkow, S. (1994). Phenotypic and genetic aspects of host cell invasion by Salmonella species. In: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0746-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4322-9

  • Online ISBN: 978-94-011-0746-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics