Skip to main content

Genesis of the Calcium-Rich a Chondrites in Light of Rare-Earth and Barium Concentrations

  • Conference paper
Meteorite Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 12))

Abstract

Rare-earth and barium concentrations have been determined by mass-spectrometric isotope-dilution for a chondrite composite, nine calcium-rich achondrites, two plagioclase separates, and two pyroxene separates. The brecciated basaltic achondrites have higher (3–17 times) absolute rare-earth and barium concentrations than those in the average chondrite, but similar relative concentrations. Rare-earth and barium data, petrography, and chemistry indicate that the brecciated achondrites cannot be cumulates, to any great extent, of pigeonite or plagioclase, which have fractionated relative rare-earth and barium concentrations. The brecciated achondrites apparently represent liquids, perhaps with different amounts of phenocrystic hypersthene; the closed-system crystallization of the Juvinas achondrite, which is induced from the whole-rock and mineral europium concentrations, strongly supports this interpretation. Hypabyssal or extrusive (rather than plutonic) crystallization is indicated. Measured plagioclase and clinopyroxene partition coefficients for the rare earths and barium place limits on maximum amounts of plagioclase and pigeonite of approximately 20% each that could have been removed from the achondritic magmas.

Plagioclase compositions, and rare-earth and barium concentrations considered in terms of measured plagioclase partition coefficients, indicate that the Serra de Mage unbrecciated achondrite is a cumulate formed from a liquid of normal brecciated achondrite composition. The fractionated whole-rock and pigeonite rare-earth and barium concentrations of the Moore County unbrecciated achondrite indicate that this meteorite is also such a cumulate; at the same time, the europium anomalies in the pigeonite and plagioclase, and the rare-earth pattern of the plagioclase, indicate considerable post-accumulation closed-system competition. It is of interest that the available rare- earth and barium data distinguish the brecciated and unbrecciated achondrites as magma and cumulates respectively; this suggests different environments. The Shergotty unbrecciated achondrite has rare-earth and barium concentrations roughly similar to those in the brecciated achondrites, but unexplained irregularities exist. The rare-earth and barium concentrations of Angra dos Reis (stone) and its composition (more than 90% augite), argue against this meteorite being a cumulate from a normal achondritic liquid; the Angra dos Reis (stone) rare-earth and barium concentrations are surprisingly similar to those observed in terrestrial sub-alkaline oceanic tholeiites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. B. Moore, ‘The Petrochemistry of the Achondrites’, in Researches on Meteorites, Ed. by C. Moore, Wiley, New York (1962) p. 164.

    Google Scholar 

  2. B. Mason, Meteorites, Wiley, New York (1962).

    Google Scholar 

  3. B. Mason, Geochim. Cosmochim. Acta, 31 (1967) 107.

    Article  ADS  Google Scholar 

  4. M. B. Duke, L. T. Silver, Geochim. Cosmochim. Acta, 31 (1967) 1637.

    Article  ADS  Google Scholar 

  5. W. Wahl, Geochim. Cosmochim. Acta, 2 (1952) 91.

    Article  ADS  Google Scholar 

  6. C. C. Schnetzler, H. H. Thomas, J. A. Philpotts, Geochim. Cosmochim. Acta, 31 (1967) 95.

    Article  ADS  Google Scholar 

  7. C. C. Schnetzler, H. H. Thomas, J. A. Philpotts, Anal. Chem., 39 (1967) 1888.

    Article  Google Scholar 

  8. R. A. Schmitt, et al., Geochim. Cosmochim. Acta, 27 (1963) 577.

    Article  ADS  Google Scholar 

  9. R. A. Schmitt, R. H. Smith, D. A. Olehy, Geochim. Cosmochim. Acta, 28 (1964) 67.

    Article  ADS  Google Scholar 

  10. G. W. Reed, K. Kigoshi, A. Turkevich, Geochim. Cosmochim. Acta, 20 (1960) 122.

    Article  ADS  Google Scholar 

  11. G. L. Bate, J. R. Huizenga, H. A. Potratz, Geochim. Cosmochim. Acta, 16 (1959) 88.

    Article  ADS  Google Scholar 

  12. P. W. Gast, Geochim. Cosmochim. Acta, 26 (1962) 927.

    Article  ADS  Google Scholar 

  13. W. H. Pinson, Jr., C. C. Schnetzler, E. Beiser, H. W. Fairbairn, P. M. Hurley, Geochim. Cosmochim. Acta, 29 (1965) 455.

    Article  ADS  Google Scholar 

  14. H. B. Wiik, Geochim. Cosmochim. Acta, 9 (1956) 279.

    Article  ADS  Google Scholar 

  15. C. B. Moore, H. Brown, Geochim. Cosmochim. Acta, 26 (1962) 495.

    Article  ADS  Google Scholar 

  16. P. W. Gast, Science, 147 (1965) 858.

    Article  ADS  Google Scholar 

  17. J. A. Philpotts, C. C. Schnetzler, H. H. Thomas, Rare Earths and Barium in the Palisade Sill (abstract). 1966 Annual Meeting Program, Geol. Soc. Am., p. 164.

    Google Scholar 

  18. L. A. Haskin, M. A. Haskin, Geochim. Cosmochim. Acta, 32 (1968) 433.

    Article  ADS  Google Scholar 

  19. J. A. Philpotts, C. C. Schnetzler, H. H. Thomas, Earth Planetary Sci. Letters, 2 (1967) 19.

    Article  ADS  Google Scholar 

  20. J. A. Philpotts, C. C. Schnetzler, Chem. Geol. 3 (1968) 5.

    Article  Google Scholar 

  21. D. G. Towell, J. W. Winchester, R. V. Spirn, J. Geophys. Res. 70 (1965) 3485.

    Article  ADS  Google Scholar 

  22. J. A. Philpotts, C. C. Schnetzler, H. H. Thomas, Nature 212 (1966) 805.

    Article  ADS  Google Scholar 

  23. C. C. Schnetzler, J. A. Philpotts, Partition coefficients of rare-earth elements and barium between igneous matrix material and rock-forming-mineral phenocrysts -I, Proc. Intern. Assoc. Geochem. Cosmochem. (in press).

    Google Scholar 

  24. H. H. Hess, E. P. Henderson, Am. Mineralogist 34 (1949) 494.

    Google Scholar 

  25. H. P. Taylor, Jr., M. B. Duke, L. T. Silver, S. Epstein, Geochim. Cosmochim. Acta, 29 (1965) 489.

    Article  ADS  Google Scholar 

  26. F. A. Frey, M. A. Haskin, J. A. Poetz, L. A. Haskin, J. Geophys. Res., 73 (1968) 6085.

    Article  ADS  Google Scholar 

  27. A. E. J. Engel, C. G. Engel, R. G. Havens, Bull. Geol. Soc. Am. 76 (1965) 719.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Schnetzler, C.C., Philpotts, J.A. (1969). Genesis of the Calcium-Rich a Chondrites in Light of Rare-Earth and Barium Concentrations. In: Millman, P.M. (eds) Meteorite Research. Astrophysics and Space Science Library, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-3411-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-3411-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3413-5

  • Online ISBN: 978-94-010-3411-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics