Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 374))

  • 472 Accesses

Abstract

It has long been known that solid carbon can be found in various guises: besides the confirmation that the different forms of graphite and diamond are crystalline varieties of this element, new forms such as the carbynes the fullerenes and nanotubes, have recently been discovered. The cause of this rich polymorphism is analysed in the present review, and it will be shown that the propensity of carbon for forming different types of homopolar chemical bonds with variable coordination numbers which is also at the basis of classical orgmic chemistty (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delhaes P. 1997, in Le Carbone dans tous ses étate, chapter 2, editors P. Bernier and S. Lefrmt (Gordon and Breach).

    Google Scholar 

  2. Atkins P.W. 1990, Physical Chemistry (fourth edition) Oxford Univenity Press.

    Google Scholar 

  3. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. 1985, Nature 318, 162.

    Article  CAS  Google Scholar 

  4. Haddon R.C. 1992, Accounts of chemical research 25, 127.

    Article  CAS  Google Scholar 

  5. Bundy F.P., Basset W.A., Weathers M.S., Hemley R.J., Mao H.K., Goncharov A.F., 1996, Carbon 34, 141.

    Article  CAS  Google Scholar 

  6. Berman R., Simon F. 1955, Z. Elektrochem. 59, 333.

    CAS  Google Scholar 

  7. Van Theil M., Ree F.M. 1993, Phys. Rev. B 48, 3591.

    Google Scholar 

  8. Cohen M.L. 1994, Sol. St. Comm. 92, 45.

    Article  CAS  Google Scholar 

  9. Hoffmann R., Hughbanks T., Kertsesz M. 1983, J. Am. Chem. Soc. 105, 4831.

    Article  CAS  Google Scholar 

  10. Kudravtsev Y.P., Evsyukov S.E., Guseva M.B., Babaev V.G., Khvostov 1997, Chemise and Physics of Carbon 25, ed. P.A. Thrower (M. Dekker New-York) 25, 1–69.

    Google Scholar 

  11. Kastner J., Kuzmany H., Kavan L., Bousek F.P., Kurti J. 1995, Macroraolecules 28, 344.

    Article  CAS  Google Scholar 

  12. Heimann R.B., Kleiman J., Salansky N.M. 1984, Carbon 22, 147.

    Article  CAS  Google Scholar 

  13. Kavan L. 1998, Fullerenes and carbon based materials, 801 (P. Delhaes and H. Kuzmany editors).

    Google Scholar 

  14. Lagow R.J., Kampa J.J., Wei H.C., Battle S.L., Genge J.W., Laude D.A., Haiper C.J., Bau R., Stevens R.C., Haw J.F., Munson E. 1995, Science 267, 362.

    Article  CAS  Google Scholar 

  15. Palnichenko A.V., Tanuma S. 1996, J. Phys. Chem. Solids 57, 1163.

    Article  CAS  Google Scholar 

  16. Bacon G.E. 1948, Acta Cryst. 1, 337.

    Article  CAS  Google Scholar 

  17. Boehm H.P., Hoffmann V. 1995, Anorg. Allgem. Chem. 278, 58, 299.

    Article  Google Scholar 

  18. Dresselhaus M.S., Dresselhaus G., Saito G. 1998, World of Carbon I.

    Google Scholar 

  19. Tamor M.A., Hass K.C. 1990. J. Mater. Res. 5, 2273.

    Article  CAS  Google Scholar 

  20. Liu A.Y., Cohen M.L. 1992, Phys. Rev. B 45, 4579.

    Google Scholar 

  21. Yin M.T., Cohen M.L. 1983, Phys. Rev. Letters 50, 2006.

    Article  CAS  Google Scholar 

  22. Spear K.E., Phelps A.W., White W.B. 1990, J. Mater, Res. 5, 2277.

    Article  CAS  Google Scholar 

  23. Bundy F.P., Kasper J.S. 1967, J. of Chem. Phys. 46, 3437.

    Article  CAS  Google Scholar 

  24. Matyushenko N.N., Strel’nitskii V.E., Gusev V.A. 1979, JETP Letters 30, 199.

    Google Scholar 

  25. Palataik L.S., Guseva M.B., Babaev V.G., Savchenko N.F., Fal’ko I.I. 1984, Sov. Phys. JETP 60, 520.

    Google Scholar 

  26. Johnston R.L., Hoffmann R. 1989, J. Am. Chem. Soc. 111, 810.

    Article  CAS  Google Scholar 

  27. Scandolo S., Chiarotti G.L., Tosatti E. 1996, Phys. Rev. B 53, 5051.

    Google Scholar 

  28. Kräschmer W., Lamb L.D., Fostiropoulos K., Huffman D.R. 1990, Nature 347, 354.

    Article  Google Scholar 

  29. lijima S. 1991, Nature 354, 56.

    Article  Google Scholar 

  30. Ebbesen W. 1994, Annu. Rev. Mat. Sci. 24, 235.

    Article  CAS  Google Scholar 

  31. Schwarz H.A. 1890 Gesamunelte Mathematische Abhandlungen Springer-Verlag Ed.

    Google Scholar 

  32. Dresselhaus M.S., Dresselhaus G., Ecklund P.C. 1995, Science of fullerenes and carbon nanotubes (Academic Press).

    Google Scholar 

  33. Baker R.T.K., Harris P.S. 1978, Chemistry and Physics of Carbon 14, 8.

    Google Scholar 

  34. Thess A., Lee R., Nikolaev B., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G.E., Tomanek D., Fischer I.E., Smalley R.E. 1992, Nature 273, 483.

    Google Scholar 

  35. Sattler K. 1995, Carbon 33, 915.

    Article  CAS  Google Scholar 

  36. Ihara S., Itoh S. 1995, Carbon 33, 931.

    Article  CAS  Google Scholar 

  37. Ugate D. 1995, Carbon 33, 989.

    Article  Google Scholar 

  38. Lenosky T., Gonze X., Teter M., Elser V. 1992, 355, 333.

    Google Scholar 

  39. Huang M.Z., Ching W.Y., Lenosky T. 1993, Phys. Rev. B 47, 1593.

    Google Scholar 

  40. Odom T.W., Huang J.L., Kim P., Lieber M., 1998, Nature 391, 62

    Article  CAS  Google Scholar 

  41. Nunez-Regueiro M., Marques L., Hodeau J.L., Bethoux O. and Perroux M. 1995, Phys. Rev. Lett. 74, 278.

    Article  CAS  Google Scholar 

  42. Blank V.D., Buga S.G., Dubitsky G.A., Serebiyanaya, Popov M.Y., Sundqvist B. 1998, Carbon 36, 319.

    Article  CAS  Google Scholar 

  43. Wells A.F. 1977, Three dimensional nets and polyedra (Wiley Ed.).

    Google Scholar 

  44. Baughman R.H., Lui C. 1993, Synthetic Metals 55–57, 315.

    Article  Google Scholar 

  45. Gleiter R., Kratz D., 1993, Angew. Chem. M. Ed. Engl. 38, 842.

    Article  Google Scholar 

  46. Diederich F. 1994, Nature 369, 199.

    Article  CAS  Google Scholar 

  47. Baughman R.H., Eckhardt H., Kertesz M. 1987, J. Chem. Phys. 87, 6687.

    Article  CAS  Google Scholar 

  48. Mera K.M., Hoffmann R., Balaban A.J. 1997, J. Am. Chem. Soc. 109, 6742.

    Google Scholar 

  49. Bucknu M.J., Hoffmann R. J. Am. Chem. Soc. 116, 11456.

    Google Scholar 

  50. Marchand M. A. 1978, Chemistiy and Physics of Carbon 7, 155, editors P.L. Walker (Marcel Dekker).

    Google Scholar 

  51. Delhaes P., Carmona F. 1981, Chemistiy and Physics of Carbon 17, 89, editors P.L. Walker and P.A. Thrower (Marcel Dekker).

    Google Scholar 

  52. Robertson J., O’Reilly E.P. 1977, Phys. Rev. B 35, 2946.

    Google Scholar 

  53. Mc Kenzie D.R., Mc Phedran R.C., Savides N., Botten L.C. 1984, Philos. Magazine B 48, 341.

    Google Scholar 

  54. Bubenzer A., Dischler B., Brandt G., Koidl P. 1983, J. Appl. Phys. 54, 4590.

    Article  CAS  Google Scholar 

  55. Ricci M., Trinquecoste M. Auguste F., Canet R., Delhaes P., Guimon C., Pfister-Gulllouzo G., Nysten B., Issi J.P. 1993, J. Mat. Res. 8, 480.

    Article  CAS  Google Scholar 

  56. Endo K., Tatsumi T. 196, Appl. Phys. Lett. 68, 2864.

    Google Scholar 

  57. Aisenberg S., Chabot R. 1977, J. Appl Phys. 42, 2953.

    Article  Google Scholar 

  58. Angus J.C., Hayman C.C. 1988, Science 241, 913.

    Article  CAS  Google Scholar 

  59. Kakinoki J., Katada K., Hanawa T., Ino T. 1960, Acta Ctystallogr. 13, 171 and 13, 448.

    Article  Google Scholar 

  60. Weissmantel C., Bewilogna K., Dietrich D., Erler H.J., Klose S., Nowick W., Reisse G. 1980, Thin Sol. Films 72, 29.

    Article  Google Scholar 

  61. Kelires P.C. 1994, Phys. Rev. Lett. 73, 2460.

    Article  CAS  Google Scholar 

  62. Oberlin A., Bonamy S. 2000, World of Carbon Volume 1, Ch. 9, 199–220 Editor P. Delhaes, (Gordon and Breach).

    Google Scholar 

  63. Paillard V., Melinon P., Dupuis V., Perez J.P., Perez A. 1993, Phys. Rev. Lett. 71, 4170.

    Article  CAS  Google Scholar 

  64. Handschuh H., Gantefor G., Kessler B., Bechthold P.S., Eberhardt 1995, Phys. Rev. Lett. 74, 1095.

    Article  CAS  Google Scholar 

  65. Kawaguchi M. 1997, Advanced Materials 9, 615.

    Article  CAS  Google Scholar 

  66. Rand B. 2001, see Chapter 7 of this NATO-ASI book.

    Google Scholar 

  67. Kouvetakis J., Kmer R.B., Sattler M.L., Bartlett N., 1986, J. Chem. Soc, Chem. Comm. 1758.

    Google Scholar 

  68. Derre A., Filipozzi P., Peron F. 1993, J. de Physique IV C3, 195.

    Google Scholar 

  69. Ottaviani B., Derre A., Grivei E., Mahmoud O.A.M., Guimon M.F., Flandrois S., Delhaes P. 1998, J. Mat. Chem. 8, 197.

    Article  CAS  Google Scholar 

  70. Maya L., Cole D.R., Hagamann E.W. 1991, J. Amer. Ceram. Soc. 74, 1686.

    Article  CAS  Google Scholar 

  71. Ortega J., Sankey J.F. 1995. Phys. Rev. B 51, 2624.

    Google Scholar 

  72. LaFEmina J.P. 1990, J. Phys. Chem. 94, 4346.

    Article  CAS  Google Scholar 

  73. Corkill J.L., Liu A.Y., Cohen M.L. 1992, Phys. Rev. B 45, 12, 746.

    Google Scholar 

  74. Liu A.Y., Cohen M.L. 1990, Phys. Rev. B 41, 10, 727.

    Google Scholar 

  75. Zerr A., Miehe G., Serghiou G., Schwarz M., Kroke E., Riedel R., Fuess H., Kroll P., Bochler R. 1999, Nature 400, 340.

    Article  CAS  Google Scholar 

  76. Trinquecoste M., Daguerre E., Couzin L., Amiell J., Derre A., Delhaes P., Ion L., Held B. 1999, Carbon 37, 457.

    Article  CAS  Google Scholar 

  77. Riviere J.P., Texier D., Delafond J., Jaonen M., Mathe E.L., Chaumont J. 1995, Mat. Lett. 22, 115.

    Article  CAS  Google Scholar 

  78. Bowser R.L., Jeski D.A., George T.F. 1992, Inorg. Chem. 31, 154.

    Article  CAS  Google Scholar 

  79. Miyamoto Y., Rubio A., Cohen M.L., Louie S.G. 1994, Phys. Rev. B 50, 4976.

    Google Scholar 

  80. Stephman O., Ajaym P.M., Colliex C., Redlich P., Lambert J.M., Bemier P., Lefin P. 1994, Science 266, 1683.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Delhaes, P. (2001). Polymorphism in Carbons and Parent Materials. In: Rand, B., Appleyard, S.P., Yardim, M.F. (eds) Design and Control of Structure of Advanced Carbon Materials for Enhanced Performance. NATO Science Series, vol 374. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1013-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1013-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0003-4

  • Online ISBN: 978-94-010-1013-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics