Skip to main content

Surface Science Investigations of Intercalation Reactions with Layered Metal Dichalcogenides

  • Chapter
New Trends in Intercalation Compounds for Energy Storage

Part of the book series: NATO Science Series ((NAII,volume 61))

Abstract

Intercalation is an important solid state reaction, which can be found for many materials providing open structural units in their crystal structure. It involves two species, one being the host, the other the guest species which can be atoms, molecules or even solvation complexes. Intercalation reactions combining different guest species with different host materials have intensively been investigated in the last decades because of their fundamental interest and because of their possible technological application. Prototype host materials are the metal chalcogenides with a layered structure. The crystal structure of the layered metal dichalcogenides (LMDC; a more often used acronym is TMDC for transition metal dichalcogenide) are characterized by two-dimensional sandwich units which are separated from each other by the so-called van der Waals gap. This bonding geometry makes these materials highly anisotropic and in extreme cases two-dimensional. There is a large number of known layered chalcogenides sharing the same or similar crystal structure but composed of different elements. Thus a large variety of properties exist making these materials interesting from the theoretical point of view, e.g. charge density waves (Wilson et al., 1974; Wilson et al., 1975; Burdett, 1996; Vescoli et al., 1998), superconductivity (Nishio et al., 1994; Cai et al., 1996; Motizuki et al., 1996), two-dimensional electronic structure (Wilson et al., 1969; Grasso, 1986; Friend et al., 1987; Hughes et al., 2000b), van der Waals epitaxy (Koma, 1992; Jaegermann et al, 2000). Also various practical applications make LMDCs attractive. Due to their low shear resistance LMDCs are used as solid-state lubricants (Zonneville et al., 1988; Tenne et al., 1993; Rapoport et al., 1997; Cohen et al., 1998; Cohen et al., 1999; Golan et al., 1999). Some of them are semiconductors with a direct band gap of 1.3-2.0 eV, perfectly matching the solar spectrum with a very high absorption coefficient, in the order of 105 cm-1 (Wilson et al., 1969; Lee, 1976; Grasso et al., 1986). and have been investigated as absorber materials for solar cells (Tributsch, 1977; Aruchamy, 1992). Due to the reactivity of the plane edges TMDCs proved to be very efficient in heterogeneous catalysis. MoS2 hydrodesulfurization catalysis is one of the most widely used catalytic systems worldwide (Somorjai, 1994). By intercalation the amount of guest species in a host can be arbitrarily varied, so that the stoichiometry can be controlled in a defined manner. With intercalation structural changes occur which are accompanied by changes of the physical properties. Thus it is often possible to tailor the physical properties which can be finely tuned by variation of host and guest properties and their stoichiometric ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, K.M., Pitts, L., and Schiff, L. (1980), “Moderate temperature sodium cells I.Transition metal disulfide cathodes”, J. Electrochem. Soc. 127, 2545–2550.

    Article  Google Scholar 

  • Aruchamy, A., ed. (1992). Photoelectrochemistry and Photovoltaics of Layered Semiconductors, Kluwer, Dordrecht.

    Google Scholar 

  • Ashcroft, N.W., and Mermin, N.D. (1976), Solid State Physics, Saunders College, Philadelphia.

    Google Scholar 

  • Aydinol, M.K., Kohan, A.F., Ceder, G., Cho, K., and Joannopoulos, J. (1997), “Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides”, Phys. Rev. B 56, 1354–1365.

    Article  Google Scholar 

  • Bayer, E., and Rüdorff, W. (1972), “Reaktion von in Schichtgittern kristallisierenden Metallsulfiden mit Alkali-naphtalid-Lösungen”, Z Naturforsch. 27b, 1336–1339.

    Google Scholar 

  • Boswell, F.W, and Bennet, J.C., eds. (1999). Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals, Kluwer, Dordrecht.

    Google Scholar 

  • Bradshaw, A.M., Scheffler, K., King, D.A., and Woodruff, D.P., eds. (1983), The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Brauer, H.E., Starnberg, H.I., Hollenboom, L.J., and Hughes, H.P. (1995), “In situ intercalation of the layered compounds TiS2, ZrSe2 and VSe2”, Surf. Sci. 333, 419–424.

    Article  Google Scholar 

  • Brauer, H.E., Ekvall, I., Olin, H., Starnberg, H.I, Wahlstrom, E., Hughes, H.P., and Strocov, V.N. (1997), “Na intercalation of VSe2 studied by photoemission and scanning tunneling microscopy”, Phys. Rev. B 55, 10022–10026.

    Article  Google Scholar 

  • Brauer, H.E, Starnberg, H.I, Holleboom, L.J., Strocov, V.N., and Hughes, H.P. (1998), “Electronic structure of pure and alkali-metal-intercalated VSe2”, Phys. Rev. B 58, 10031–10045.

    Article  Google Scholar 

  • Brauer, HE, Starnberg, H.I, Holleboom, L.J., Hughes, H.P, and Strocov, V.N. (1999), “Modifying the electronic structure of TiS2 by alkali metal intercalation”, J. Phys.: Condens. Matter 11, 8957–8973.

    Article  Google Scholar 

  • Briggs, D. (1977), Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, Heyden, London.

    Google Scholar 

  • Bronold, M., Pettenkofer, C., and Jaegermann, W. (1991), “Alkali metal intercalation into SnS2”, Appl. Phys. A 52, 171–179.

    Article  Google Scholar 

  • Burdett, J.K. (1996), “Electronic structure and properties of solids”, J. Phys. Chem. 100, 13263–13274.

    Article  Google Scholar 

  • Butz, T., Flagmeyer, R.H., Jankuhn, S., Reinert, T., Dasilva, MR, Soares, J.C., and Troger, W. (1998), “RBS studies of the intercalation compound HgxTiS2: Morphology and staging”, Nucl. Instr. Meth. Phys. Res. B 138, 253–257.

    Article  Google Scholar 

  • Cai, S.H., and Liu, C.W. (1996), “Studies on the band structures of some layered transition metal dichalcogenides”, Theochem 362, 379–385.

    Article  Google Scholar 

  • Cardona, M., and Ley, L., eds. (1979), Photoemission in Solids, Springer, Berlin.

    Google Scholar 

  • Clerc, D.G., Poshusta, R.D., and Hess, A.C. (1996), “Periodic Hartree-Fock study of TiS2”, J. Phys. Chem. 100, 15735–15747.

    Article  Google Scholar 

  • Clerc, D.G., Poshusta, R.D., and Hess, A.C. (1997), “Periodic Hartree-Fock study of LixTiS2, 0<=x<=1: The structural, plastic, and electronic effects of lithium intercalation in TiS2”, J. Phys. Chem. A 101, 8926–8931.

    Article  Google Scholar 

  • Cohen, S.R., Rapoport, L., Ponomarev, E.A., Cohen, H., Tsirlina, T., Tenne, R., and Levy-Clement, C. (1998), “The tribological behavior of type II textured MX2 (M=Mo, W, X=S, Se) films”, Thin Solid Films 324, 190–197.

    Article  Google Scholar 

  • Cohen, S.R., Feldman, Y., Cohen, H., and Tenne, R. (1999), “Nanotribology of novel metal dichalcogenides”, Appl. Surf. Sci. 145, 603–607.

    Article  Google Scholar 

  • Crawack, H.J., Tomm, Y., and Pettenkofer, C. (2000), “Localization and charge density wave transformation in Cs intercalated 1T-TaSe2”, Surf. Sci. 465, 301–309.

    Article  Google Scholar 

  • Crawack, H.J., and Pettenkofer, C. (2001), “Calculation and XPS measurements of the Ta4f CDW splitting in Cu, Cs and Li intercalation phases of 1T-TaX2 (X = S, Se)”, Solid State Commun. 118, 325–332.

    Article  Google Scholar 

  • Dahn, J.R., Dahn, DC., and Haering, R.R. (1982), “Elastic energy and staging in intercalation compounds”, Solid State Commun. 42, 179–183.

    Article  Google Scholar 

  • Dahn, J.R., and McKinnon, W.R. (1984), “Lithium intercalation in 2H-LixTaS2”, J. Phys. C 17, 4231–4243.

    Article  Google Scholar 

  • Di Salvo, F.J., Moncton, D.E., and Waszczak, J.V. (1976), “Electronic properties and superlattice formation in the semimetal TiSe2”, Phys. Rev. B 14, 4321–4328.

    Article  Google Scholar 

  • Di Salvo, F.J. (1977), “Charge Density Waves in Layered Compounds”. in Electron-Phonon Interactions and Phase Transitions (T. Riste, ed.), Plenum Press, New York and London.

    Google Scholar 

  • Dijkstra, J., van Bruggen, C.F., and de Haas, C. (1989a), “The electronic structure of some monovalent-metal intercalates of TiS2”, J. Phys.: Condens. Matter 1, 4297–4309.

    Article  Google Scholar 

  • Dijkstra, J., Zijlema, P., van Bruggen, C.F., Haas, C., and de Groot, R.A. (1989b), “Band-structure calculations of Fe1/3TaS2 and Mn1/3TaS2, and transport and magnetic properties of Fe0.28TaS2”, J. Phys.: Condens. Matter 1, 6363–6379.

    Article  Google Scholar 

  • Dresselhaus, M.S., and Dresselhaus, F. (1981), “Intercalation compounds of graphite”, Adv. Phys. 30, 139–326. Dresselhaus, M.S., ed. (1986), Intercalation in Layered Materials, Vol. B 148. Perseus, New York. Ertl, G., and Küppers, J. (1985), Low Energy Electrons and Surface Chemistry, WCH, Weinheim.

    Article  Google Scholar 

  • Eyert, V. (1997), “Electronic structure calculations for crystalline materials”, in Density functional methods: applications in chemistry and materials science (M. Springborg, ed.), Wiley, Sussex.

    Google Scholar 

  • Fang, C.M., Wiegers, G.A., Meetsma, A., de Groot, R.A., and Haas, C. (1996), “Crystal structure and band structure calculations of Pb1/3TaS2 and Sn1/3NbS2”, Physica B 226, 259–267.

    Article  Google Scholar 

  • Fang, C.M., de Groot, R.A., and Haas, C. (1997), “Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2”, Phys. Rev. B 56, 4455–4463.

    Article  Google Scholar 

  • Fargues, D., Tyuliev, G., Brojerdi, G., Eddrief, M., and Balkanski, M. (1997), “Ultra-high vacuum deposition of sodium on indium monoselenide: Intercalation or chemical reaction?”, Surf. Sci. 370, 201–208.

    Article  Google Scholar 

  • Feuerbach, B., Fitton, B., and Willis, R.F., eds. (1978), Photoemission and the Electronic Properties of Surfaces,. Wiley, New York.

    Google Scholar 

  • Foulias, S.D., Vlachos, D.S., Papageorgopoulos, C.A., Yavor, R., Pettenkofer, C., and Jaegermann, W. (1996), “A synchrotron radiation study of the interaction of Na with WSe2 and TaSe2: Oxygen-induced deintercalation”, Surf. Sci. 352, 463–467.

    Article  Google Scholar 

  • Fredenhagen, K., and Cadenbach, G. (1926), Z Anorg. Allg. Chem. 158, 249.

    Article  Google Scholar 

  • Friend, R.H., and Yoffe, A.D. (1987), “Electronic properties of intercalation complexes of the transition metal dichalcogenides”, Adv. Phys. 36, 1–94.

    Article  Google Scholar 

  • Fuggle, J.C., and Martensson, N. (1980), “Core-level binding energies in metals”, J. Electr. Spectr. Rel. Phen. 21, 275–281.

    Article  Google Scholar 

  • Fujimori, A., Suga, S., Negishi, H., and Inoue, M. (1988), “X-ray photoemission and Auger-electron spectroscopic study of the electronic structure of intercalation compounds MxTiS2 (M=Mn,Fe,Co, and Ni)”, Phys. Rev. B 38, 3676–3689.

    Article  Google Scholar 

  • Ganal, P., Olberding, W., Butz, T., and Ouvrard, G. (1993), “Soft chemistry induced host metal coordination change from octahedral to trigonal prismatic in 1T-TaS2”, Solid State Ionics 59, 313.

    Article  Google Scholar 

  • Gerischer, H., Decker, F., and Scrosati, B. (1994), “The electronic and the ionic contribution to the free energy of alkali metals in intercalation compounds”, J. Electrochem. Soc. 141, 2297–2300.

    Article  Google Scholar 

  • Golan, Y., Drummond, C., Homyonfer, M., Feldman, Y., Tenne, R., and Israelachvili, J. (1999), “Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures”, Advan. Mater. 11, 934.

    Article  Google Scholar 

  • Grasso, V., ed. (1986). “Electronic Structure and Electronic Transitions in Layered Materials,”. D. Reidel, Dordrecht.

    Google Scholar 

  • Grasso, V., and Mondio, G. (1986), in Electronic Structure and Electronic Transitions in Layered Materials (V. Grasso, ed.), D. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Heitmann, J., McCallum, J., Troger, W., and Butz, T. (1999), “Silver intercalation in titanium disulphide”, Nucl. Instr. Meth. Phys. Res. B 158, 689–694.

    Article  Google Scholar 

  • Hibma, T. (1980), “Ordering of the alkali-ions in NaxTiS2 and LixTiS2”, Physica B 99, 136–140.

    Article  Google Scholar 

  • Hibma, T. (1982), “Structural aspects of monovalent cation intercalates of layered dichalcogenides”. in Intercalation Chemistry (M.S. Whittingham and A.J. Jacobson, eds.), Academic press, New York.

    Google Scholar 

  • Hughes, H.P., and Pollak, R. (1976), “Charge density waves in layered metals observed by x-ray photoemission”, Philos. Mag. 34, 1025–1046.

    Article  Google Scholar 

  • Hughes, H.P., and Scarfe, J.A. (1996a), “Lineshapes in core-level photoemission from metals. 1. Theory and computational analysis”, J. Phys.: Condens. Matter 8, 1421–1438.

    Article  Google Scholar 

  • Hughes, H.P., and Scarfe, J.A. (1996b), “Lineshapes in core-level photoemission from metals. 3. Sitedependent screening in the charge density wave materials 1T-and 4H(b)-TaS2”, J. Phys.: Condens. Matter 8, 1457–1473.

    Article  Google Scholar 

  • Hughes, H.P., and Scarfe, J.A. (2000a), “Electronic Structure from Core Level Lineshapes in Charge Density Wave and Intercalate Systems”, in Electron Spectroscopies Applied to Low-Dimensional Materials (H.P. Hughes and H.I. Starnberg, eds), Vol. 24, pp. 99–160. Kluwer, Dordrecht.

    Google Scholar 

  • Hughes, H.P., and Starnberg, H.I., eds. (2000b). “Electron Spectroscopies Applied to Low-Dimensional Materials,” Vol. 24. Kluwer, Dordrecht.

    Google Scholar 

  • Jacobson, A.J. (1982), in Intercalation Chemistry (A.J. Jacobson and M.S. Whittingham, eds.), Academic Press, New York.

    Google Scholar 

  • Jaegermann, W. (1986), “Simulation of Photoactive Semiconductor Interfaces in the UHV: Adsorption of Halogens on n-MoSe2”, in Electrochem. Soc. Conf. Fall.

    Google Scholar 

  • Jaegermann, W., Ohuchi, F.S., and Parkinson, B.A. (1989), “Electrochemical and Solid State Reactions of Copper with n-SnS2”, Ber. Bunsenges. Phys. Chem. 93, 29.

    Article  Google Scholar 

  • Jaegermann, W., Pettenkofer, C., and Parkinson, B.A. (1990), “Cu and Ag deposition on layered p-type WSe2: Approaching the Schottky limit”, Phys. Rev. B 42, 7487–7496.

    Article  Google Scholar 

  • Jaegermann, W., Pettenkofer, C., Schellenberger, A., Papageorgopoulos, C.A., and Kamaratos, M. (1994), “Photoelectron spectroscopy of UHV in situ intercalated Li/TiSe2. Experimental proof of the rigid band model”, Chem. Phys. Letters 221, 441–446.

    Article  Google Scholar 

  • Jaegermann, W., Pettenkofer, C., Henrion, O., Tomm, Y., Papageorgopoulos, C.A., Kamaratos, M., and Papageorgopoulos, D.C (1996), “Surface science investigations of Cu intercalation in 1T TaSe2 and TiSe2 and its deintercalation by adsorbed Br2”, Ionics 2, 201.

    Article  Google Scholar 

  • Jaegermann, W., Klein, A., and Pettenkofer, C. (2000), “Electronic Properties of van der Waals-Epitaxy Films and Interfaces in Physics and Chemistry of Materials with Low-Dimensional Structures”, in Electron Spectroscopies Applied to Low-Dimensional Materials (H.P. Hughes and H.I. Starnberg, eds.), Vol. 24, pp. 317. Kluwer, Dordrecht.

    Google Scholar 

  • Jones, H. (1934), Proc. R. Soc. London Ser. A 144, 225.

    Article  Google Scholar 

  • Julien, C., and Stoynov, Z., eds. (2000), Materials for Lithium-Ion Batteries,. Kluwer, Dordrecht.

    Google Scholar 

  • Kamaratos, M., Papageorgopoulos, C.A., Papageorgopoulos, D.C., Jaegermann, W., Pettenkofer, C., and Lehmann, J. (1997), “Adsorption of Br2 on Na-intercalated n-WSe2: Br-induced deintercalation”, Surf. Sci. 377, 659–663.

    Article  Google Scholar 

  • Kamaratos, M., Saltas, V., Papageorgopoulos, C.A., Jaegermann, W., Pettenkofer, C., and Tonti, D. (1998), “Interaction of Na and Cl2 on WSe2(0001) surfaces chlorine-induced Na deintercalation”, Surf. Sci. 404, 37–41.

    Article  Google Scholar 

  • Kamaratos, M., Papageorgopoulos, C.A., Papageorgopoulos, D.C., Tonti, D., Pettenkofer, C., and Jaegermann, W. (1999a), “Cesium deintercalation by Li or Na deposited on 1T-TaSe2 (0001) surfaces”, Appl. Surf. Sci. 147, 101–106.

    Article  Google Scholar 

  • Kamaratos, M., Papageorgopoulos, C.A., Papageorgopoulos, D.C., Tonti, D., Pettenkofer, C., and Jaegermann, W. (1999b), “Interaction between Li and Na intercalated into 1T-TaSe2 layer compounds”, Surf. Rev. Lett. 6, 205–211.

    Article  Google Scholar 

  • Kim, Y.S., Koyama, Y., Tanaka, I., and Adachi, H. (1998a), “Chemical bondings around intercalated Li atoms in LiTiX2 (X = S, Se, and Te)”, Jpn. J. Appl. Phys. Pt.1 37, 6440–6445.

    Article  Google Scholar 

  • Kim, Y.S., Mizuno, M., Tanaka, I., and Adachi, H. (1998b), “Electronic structures and chemical bonding of TiX2 (X = S, Se, and Te)”, Jpn. J. Appl. Phys. Pt.1 37, 4878–4883.

    Article  Google Scholar 

  • Koch, E.E., ed. (1983), Handbook of Synchrotron Radiation, Vol. la, 1b. North Holland, Amsterdam.

    Google Scholar 

  • Koma, A. (1992), “Van der Waals epitaxy-a new epitaxial growth method for a highly lattice-mismatched system”, Thin Solid Films 216, 72–76.

    Article  Google Scholar 

  • Kotani, A., and Toyozawa, Y. (1974), “Photoelectron spectra of core electrons in metals with incomplete shells”, J. Phys. Soc. Jpn. 37, 912–919.

    Article  Google Scholar 

  • Kunz, C., ed. (1979), Synchrotron Radiation, Techniques and Applications, Springer, Berlin.

    Google Scholar 

  • Lazzari, M., Razzini, G., and Scrosati, B. (1976), “An investigation on various cathodic materials in copper solid-state power sources” J. Power Sources, 1, 57–63.

    Article  Google Scholar 

  • Lee, P.A., ed. (1976), Optical and Electrical Properties, D. Reidel, Dordrecht.

    Google Scholar 

  • Levy, F., ed. (1976), Crystallography and Crystal Chemistry of Materials with Layered Structures, D. Reidel, Dordrecht.

    Google Scholar 

  • Levy, F.A., ed. (1979), Intercalated Layered Materials, Vol. 6. D. Reidel, Dordrecht.

    Google Scholar 

  • Liang, W.Y. (1986), “Electronic properties of transition metal dichalcogenides and their intercalation complexes”, in Intercalation in Layered Materials (M.S. Dresselhaus, ed.), Vol. B 148, pp. 31. Perseus Publishing, New York.

    Google Scholar 

  • Lide, D.R. (1997), CRC Handbook of Chemistry and Physics, 78th/Ed. CRC Press, Boca Raton.

    Google Scholar 

  • Mahan, G. (1967), “Excitons in Metals: Infinite Hole Mass”, Phys. Rev. 163, 612–617.

    Article  Google Scholar 

  • Manriquez, V., Ruizleon, D., Lara, N., and Gonzalez, G. (1995), “Layered transition-metal dichalcogenides MX2(M=Nb, Ta; X=S, Se, Te): Structure of new phases of tantalum derivatives and intercalation of conducting polymers”, Bol. Soc. Chil. Quim. 40, 213–217.

    Google Scholar 

  • Martinez, H., Auriel, C., Matar, S.F., and Pfister-Guillouzo, G. (1997), “Electronic structure of intercalated metal disulfide (Fe1/4TiS2) studied by XPS and theoretical calculations”, J. Electr. Spectr. Rel. Phen. 87, 19–30.

    Article  Google Scholar 

  • Maruta, R., Makita, A., and Ohshima, K. (1993), “Local structure of intercalants in layered compound Cu0.15Ti1.08S2”, J. Phys. Soc. Jpn. 62, 3506–3512.

    Article  Google Scholar 

  • Matsushita, T., Suga, S., Tanaka, Y., Shigeoka, H., Nakatani, T., Okuda, T., Terauchi, T., Shishidou, T., Kimura, A., Daimon, H., Oh, S.J., Kakizaki, A., Kinoshita, T., Negishi, H., and Inoue, M. (1996), “Angleresolved photoemission study of MxTiS2 (M=Mn, Fe, Co, Ni; x=l/3, 1/4)”, J. Electr. Spectr. Rel. Phen. 78, 477–480.

    Article  Google Scholar 

  • Mattheiss, L.F. (1973), “Band Structures of Transition-Metal-Dichalcogenide Layer Compounds”, Phys. Rev. 8, 3719–3740.

    Article  Google Scholar 

  • McCanny, J.V. (1979), “A theoretical study of the effects of lithium intercalation on the electronic structure of TiS2”, J. Phys. C 12, 3263–3276.

    Article  Google Scholar 

  • McKelvy, M.J., Sharma, R., and Glaunsinger, W.S. (1993), “Atomic-level imaging of intercalation reactions by DHRTEM”, Solid State Ionics 63-65, 369–377.

    Article  Google Scholar 

  • McKinnon, W.R. (1987), “Electronic structure of transition metal chalcogenides and their intercalation compounds”, in Chemical Physics of Intercalation (A.P. Legrand and S. Flandrois, eds.), Vol. B172, pp. 181–194. Plenum Press, New York.

    Google Scholar 

  • McKinnon, W.R. (1995), “Insertion electrodes I: Atomic and electronic structure of the hosts and their insertion compounds”, in Solid State Electrochemistry (P.G. Bruce, ed.), pp. 163–198. Cambridge University Press, Cambridge.

    Google Scholar 

  • McKinnon, W.R., and Haering, R.R. (1980), “Strain effects in intercalation systems”, Solid State Ionics 1, 111–120.

    Article  Google Scholar 

  • McKinnon, W.R., and Haering, R.R. (1983), “Physical Mechanisms of Intercalation”, in Modern Aspects of electrochemistry (R.E. White, J.O.M. Bockris and B.E. Conway, eds.), Vol. 15, pp. 235. Plenum Press, New York.

    Chapter  Google Scholar 

  • McKinnon, W.R., and Selwyn, L.S. (1987), “Ionic and electronic contributions to the Li chemical potential in LixRuzMo6-zSe8”, Phys. Rev. B 35, 7275–7278.

    Article  Google Scholar 

  • Molinie, P., Trichet, L., Rouxel, J., Berthier, C., Chabre, Y., and Segransan, P. (1984), “The Na-TiS2 system: a critical discussion of the phase boundaries, structural and NMR studies”, J. Phys. Chem. Solids 45, 105–112.

    Article  Google Scholar 

  • Motizuki, K., Nishio, Y., Shirai, M., and Suzuki, N. (1996), “Effect of intercalation on structural instability and superconductivity of layered 2H-type NbSe2 and NbS2”, J. Phys. Chem. Solids 57, 1091–1096.

    Article  Google Scholar 

  • Newmann, G.H., and Kiemann, L.P. (1980), “Ambient temperature cycling of an Na-TiS2 cell”, J. Electrochem. Soc. 127, 2097–2099.

    Article  Google Scholar 

  • Nishio, Y., Shirai, M., Suzuki, N., and Motizuki, K. (1994), “Role of Electron-Lattice Interaction in Layered Transition Metal Dichalcogenide 2H-NbS. I. Phonon Anomaly and Superconductivity”, J. Phys. Soc. Jpn. 63, 156–167.

    Article  Google Scholar 

  • Nozieres, C., and De Dominicis, C.T. (1969), “Singularities in the X-Ray Absorption and Emission of Metals. III. One-Body Theory Exact Solution”, Phys. Rev. 178, 1097–1107.

    Article  Google Scholar 

  • Nyholm, R., Martensson, N., Lebugle, A., and Axelsson, U. (1981), “Auger and Coster-Kronig broadening effects in the 2p and 3p photoelectron spectra from the metals 22Ti-30Zn”, J. Phys. F 11, 1727–1733.

    Article  Google Scholar 

  • Ohuchi, F.S., Jaegermann, W., Pettenkofer, C., and Parkinson, B.A. (1989), “Semiconductor to Metal Transition of WS2 induced by K intercalation in ultrahigh vacuum”, Langmuir 5, 439.

    Article  Google Scholar 

  • Ouvrard, G., and Wu, Z.Y. (1997), “XAFS study of charge transfer in intercalation compounds”, Nucl. Instr. Meth. Phys. Res. B 133, 120–126.

    Article  Google Scholar 

  • Papageorgopoulos, C.A., and Jaegermann, W. (1995), “Li intercalation across and along the van der Waals surfaces of MoS2(0001)”, Surf. Sci. 338, 83–93.

    Article  Google Scholar 

  • Papageorgopoulos, C.A., Kamaratos, M., Papageorgopoulos, D.C., Jaegermann, W., Pettenkofer, C., and Henrion, O. (1997), “Adsorption of Br2 on Na-intercalated layered compounds: bromine-induced deintercalation”, Surf. Rev. Lett. 4, 237–244.

    Article  Google Scholar 

  • Papageorgopoulos, C.A., Kamaratos, M., Saltas, V., Jaegermann, W., Pettenkofer, C., and Tonti, D. (1998), “Na and Cl2 interaction on 1T and 2H-TaSe2(0001) surfaces”, Surf. Rev. Lett. 5, 997–1005.

    Article  Google Scholar 

  • Papageorgopoulos, C.A., Kamaratos, M., Papageorgopoulos, D.C., Tonti, D., Pettenkofer, C., and Jaegermann, W. (1999), “Exchange reaction between Li and Na intercalated into TiS2”, Surf. Sci 436, 213–219.

    Article  Google Scholar 

  • Pauling, L. (1960), The Nature of the Chemical Bond, Cornell Univ. Press, Ithaca, New York.

    Google Scholar 

  • Peierls, R.E. (1955), Quantum Theory of Solids, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Pendry, J.B. (1974), Low Energy Electron Diffraction, Academic Press, New York.

    Google Scholar 

  • Pervov, V.S., Volkov, V.V., Falkengof, A.T., Makhonina, E.V., and Elizarova, N.V. (1996), “Origin of structural instability in metal-intercalated layered dichalcogenides”, Inorg. Mat. 32, 597–600.

    Google Scholar 

  • Pettenkofer, C., Jaegermann, W., Schellenberger, A., Holub-Krappe, E., Papageorgopoulos, C.A., Kamaratos, M., and Papageorgopoulos, A. (1992), “Cs Deposition on Layered 2H TaSe2 (0001) Surfaces — Adsorption or Intercalation?”, Solid State Commun. 84, 921–926.

    Article  Google Scholar 

  • Pettenkofer, C., and Jaegermann, W. (1994), “Charge-density-wave transformation induced by Na intercalation into 1T-TaS2”, Phys. Rev. B 50, 8816–8823.

    Article  Google Scholar 

  • Pollak, R., Eastmann, D., Himpsel, F., Heimann, P., and Reihl, B. (1981), “1T-TaS2 charge-density-wave metal-insulator transition and Fermi-surface modification observed by photoemission”, Phys. Rev. B 24, 7435–7438.

    Article  Google Scholar 

  • Py, M.A., and Haering, R.R. (1983), “Structural destabilization induced by lithium intercalation in MoS2 and related compounds”, Can. J. Phys. 61, 76–84.

    Article  Google Scholar 

  • Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., and Tenne, R. (1997), “Hollow nanoparticles of WS2 as potential solid-state lubrificants”, Nature 387, 791–793.

    Article  Google Scholar 

  • Remskar, M., Popovic, A., and Starnberg, H.I. (1999), “Stacking transformation and defect creation in Cs intercalated TiS2 single crystals”, Surf. Sci. 430, 199–205.

    Article  Google Scholar 

  • Rouxel, J. (1979), in Crystallography and crystal chemistry of materials with layered structures (F. Levy, ed.), Vol. 6, pp. 201. D. Reidel, Dordrecht.

    Google Scholar 

  • Rüdorff, W., and Sick, H.H. (1959), “Einlagerungsverbindungen von Alkali-und Erdalkalimetallen in Molibdän-und Wolframdisulfid”, Angew. Chem. 71, 127.

    Article  Google Scholar 

  • Scarfe, J.A., and Hughes, H.P. (1989), “Core-level linehapes in photoemission from transition-metal intercalates of TaS2”, J. Phys.: Condens. Matter 1, 6865–6875.

    Article  Google Scholar 

  • Schellenberger, A. (1992). Photoelektronspektroskopie an in-situ präparierten Alkali/Schichtgitter-Grenzflächen, Ph.D. Thesis, Freie Universität, Berlin.

    Google Scholar 

  • Schellenberger, A., Schlaf, R., Mayer, T., Holub-Krappe, E., Pettenkofer, C., Jaegermann, W., Ditzinger, U.A., and Neddermeyer, H. (1991), “Na adsorption on the layered semiconductors SnS2 and WSe2”, Surf. Sci. 241, L25–L29.

    Article  Google Scholar 

  • Schellenberger, A., Jaegermann, W., Pettenkofer, C., Papageorgopoulos, C.A., and Kamaratos, M. (1992a), “Alkali Intercalation into Layered Compounds — UHV Insitu Preparation and Reactivity”, Ber. Bunsenges. Phys. Chem. 96, 1755–1761.

    Article  Google Scholar 

  • Schellenberger, A., Schlaf, R., Pettenkofer, C., and Jaegermann, W. (1992b), “Synchrotron-induced surfacephotovoltage saturation at intercalated Na/WSe2 interfaces”, Phys. Rev. B 45, 3538–3545.

    Article  Google Scholar 

  • Schellenberger, A., Schlaf, R., Pettenkofer, C., and et al. (1993), “XPS and SXPS studies on in-situ prepared Na/InSe insertion compounds”, Solid State Ionics 66, 307–312.

    Article  Google Scholar 

  • Schellenberger, A., Jaegermann, W., Pettenkofer, C., Kamaratos, M., and Papageorgopoulos, C.A. (1994a), “Li Insertion into 2H-WS2 — Electronic Structure and Reactivity of the UHV Insitu Prepared Interface”, Ber. Bunsenges. Phys. Chem. 98, 833–841.

    Article  Google Scholar 

  • Schellenberger, A., Lehmann, J., Pettenkofer, C., and Jaegermann, W. (1994b), “Electronic Structure of in-situ (in UHV) prepared Li/InSe Insertion Compounds”, Solid State Ionics 74, 255.

    Article  Google Scholar 

  • Schellenberger, A., Jaegermann, W., Pettenkofer, C., and Tomm, Y. (1995), “Electronic structure and electrochemical potential of electrons during alkali intercalation in layered materials”, Ionics 1, 115–124.

    Article  Google Scholar 

  • Sellmyer, D.J. (1978), “Electronic Structure of Metallic Compounds and Alloys: Experimental Aspects”, in Solid State Physics (H. Ehrenreich, F. Seitz and D. Turnbull, eds.), Vol. 33, pp. 83–248. Academic press, New York.

    Google Scholar 

  • Sharma, S., Nautiyal, T., Singh, G.S., Auluck, S., Blaha, P., and Ambrosch Draxl, C. (1999), “Electronic structure of 1T-TiS2”, Phys. Rev. B 59, 14833–14836.

    Article  Google Scholar 

  • Silbernagel, B.G., and Whittingham, M.S. (1976a), “The physical properties of the NaxTiS2 intercalation compounds: A synthetic and NMR study”, Mat. Res. Bull., 11, 29–36.

    Article  Google Scholar 

  • Silbernagel, B.G., and Whittingham, M.S. (1976b), “An NMR study of the alkali metal intercalation phase LixTiS2: Relation to structure, thermodynamics, and ionicity”, J. Chem. Phys., 64, 3670–3673.

    Article  Google Scholar 

  • Somorjai, G.A. (1994), Introduction to Surface Chemistry and Catalysis, John Wiley & Sons, Ltd, New York.

    Google Scholar 

  • Starnberg, H.I. (2000), “Recent developments in alkali metal intercalation of layered transition metal dichalcogenides”, Mod. Phys. Lett. B 14, 455–471.

    Article  Google Scholar 

  • Starnberg, H.I., and Hughes, H.P. (1987), “Photo-emission study of in-situ intercalation of TiS2 with Ag”, J. Phys. C 20, 4429–4436.

    Article  Google Scholar 

  • Starnberg, H.I., Brauer, H.E., and Hughes, H.P. (1996), “Photoemission studies of the conduction band filling in Ti1.05S2 and Cs-intercalated TiS2 and ZrSe2”, J. Phys.: Condens. Matter 8, 1229–1234.

    Article  Google Scholar 

  • Starnberg, H.I., Brauer, H.E., and Hughes, HP. (1997a), “Exchange reaction between intercalated Na and K studied by synchrotron radiation”, Surf. Sci. 377, 828–832.

    Article  Google Scholar 

  • Starnberg, H.I., Brauer, H.E., and Strocov, V.N. (1997b), “Low temperature adsorption of Cs on layered TiS2 studied by photoelectron spectroscopy”, Surf. Sci. 384, L785–L790.

    Article  Google Scholar 

  • Starnberg, H.I., Brauer, H.E., and Hughes, H.P. (2000), “Photoemission from intercalated transition metal dichalcogenides”. in Electron Spectroscopies Applied to Low-Dimensional Materials (H.P. Hughes and H.I. Starnberg, eds.), Vol. 24, pp. 41–98. Kluwer, Dordrecht.

    Google Scholar 

  • Su, C.Y., Lindau, I., Chye, P.W., Oh, S.J., and Spicer, W.E. (1983), “Photoemission studies of clean and oxidized Cs”, J. Electr. Spectr. Rel. Phen. 31, 221–259.

    Article  Google Scholar 

  • Subba Rao, G.V., and Shafer, M.W. (1979), in Intercalated layered materials (F. Lévy, ed.), pp. 99. D. Reidel, Dordrecht.

    Google Scholar 

  • Tenne, R., Margulis, L., and Hodes, G. (1993), “Fullerene-Like Nanocrystals of Tungsten Disulfide”, Advan. Mater. 5, 386–388.

    Article  Google Scholar 

  • Thompson, A.H. (1978), “Lithium ordering in LixTiS2”, Phys. Rev. Lett. 40, 1511–1514.

    Article  Google Scholar 

  • Tillement, O., and Quarton, M. (1993), “Theoretical study of ordering effects during electrochemical insertion”, J. Electrochem. Soc. 140, 1870.

    Article  Google Scholar 

  • Tonti, D. (2000). Photoelectron spectroscopy study of the intercalation reaction of alkali metals in transition metal dichalcogenides. Ph.D., Freie Universität, Berlin

    Google Scholar 

  • Tonti, D., Pettenkofer, C., Jaegermann, W., Papageorgopoulos, D.C., Kamaratos, M., and Papageorgopoulos, C.A. (1998), “Alkali displacements in intercalated 1T-TaSe2”, Ionics 4, 93–100.

    Article  Google Scholar 

  • Tonti, D., Pettenkofer, C., and Jaegermann, W. (2000a), “In-situ photoelectron spectroscopy study of a TiS2 cathode in an operating battery system”, Electrochemical and Solid-State Letters 3, 220–223.

    Article  Google Scholar 

  • Tonti, D., Pettenkofer, C., and Jaegermann, W. (2000b), “In-situ photoelectron spectroscopy study of a TiS2 thin film cathode in an operating Na intercalation electrochemical cell”, Ionics 6, 196–202.

    Article  Google Scholar 

  • Tributsch, H. (1977), “Solar energy-assisted electrochemical splitting of water”, Z Naturforsch. 32a, 972–985.

    Google Scholar 

  • Umrigar, C., Ellis, D.E., Wang, D.S., Krakauer, H., and Posternak, M. (1982), “Band structure, intercalation, and interlayer interactions of transition-metal dichalcogenides: TiS2 and LiTiS2”, Phys. Rev. B 26, 4935–4950.

    Article  Google Scholar 

  • van Hove, M.A., Weinberg, W.H., and Chan, C.M. (1979), Low Energy Electron Diffraction, Springer, Berlin.

    Google Scholar 

  • Vante, N.A., Jaegermann, W., Tributsch, H., Hönle, W., and Yvon, K. (1987), “Electrocatalysis of Oxygen Reduction by Chalcogenides Containing Mixed Transition Metal Clusters”, J. Am. Chem. Soc. 109, 3251–3257.

    Article  Google Scholar 

  • Vescoli, V., Degiorgi, L., Berger, H., and Forro, L. (1998), “Dynamics of correlated two-dimensional materials: The 2H-TaSe2 case”, Phys. Rev. Lett. 81, 453–456.

    Article  Google Scholar 

  • Weitering, H.H., and Hibma, T. (1991), “Growth and electronic structure of some monovalent metals on TiS2(001)”, J. Phys.: Condens. Matter 3, 8535–8564.

    Article  Google Scholar 

  • Whitefield, R., and Brady, J. (1971), “New value for work function of sodium and the observation of surfaceplasmon effects”, Phys. Rev. Lett. 26, 380–383.

    Article  Google Scholar 

  • Whittingham, M.S. (1976a), “Electrical energy storage and intercalation chemistry”, Science 192, 1126–1127.

    Article  Google Scholar 

  • Whittingham, M.S. (1976b), “Role of ternary phases in cathode reactions. (Li/oxides or Sulfides.)”, J. Electrochem. Soc. 123, 315–320.

    Article  Google Scholar 

  • Whittingham, M.S. (1978), “Chemistry of intercalation compounds: metal guests in chacogenide hosts”, Prog. Solid State Chem. 12, 41–99.

    Article  Google Scholar 

  • Whittingham, M.S. (1981), “Lithium incorporation in crystalline and amorphous chalcogenides: thermodynamics, mechanism and structure”, J. Electroanal. Chem. 118, 229–239.

    Article  Google Scholar 

  • Whittingham, M.S. (1982), in Intercalation Chemistry (M.S. Whittingham and A.J. Jacobson, eds.). D. Reidel, Dordrecht.

    Google Scholar 

  • Whittingham, M.S., and Gamble, F.R. (1975), “The lithium intercalates of the transition metal dichalcogenides”, Mat. Res. Bull. 10, 363–379.

    Article  Google Scholar 

  • Wiegers, G.A. (1980), “Physical properties of first-row transition metal dichalcogenides and their intercalates”, Physica B 99, 151–165.

    Article  Google Scholar 

  • Wilson, J.A., and Yoffe, A.D. (1969), “The transition metal dichalcogenides. Discussion and interpretation of the observed optical, electrical and structural properties”, Adv. Phys. 18, 193–335.

    Article  Google Scholar 

  • Wilson, J.A., Di Salvo, F.J., and Mahajan, S. (1974), “Charge-density waves in metallic, layered, transitionmetal-dichalcogenides”, Phys. Rev. Lett. 32, 882–885.

    Article  Google Scholar 

  • Wilson, J.A., Di Salvo, F.J., and Mahajan, S. (1975), “charge-density waves and superlattices in the metallic layered transition metal dichalcogenides”, Adv. Phys. 24, 117–201.

    Article  Google Scholar 

  • Woodruff, D.P., and Delchar, T.A. (1986), Modem Techniques of Surface Science, Cambridge University Press, Cambridge.

    Google Scholar 

  • Wu, Z.Y., Ouvrard, G., Lemaux, S., Moreau, P., Gressier, P., Lemoigno, F., and Rouxel, J. (1996), “Sulfur Kedge x-ray-absorption study of the charge transfer upon lithium intercalation into titanium disulfide”, Phys. Rev. Lett. 77, 2101–2104.

    Article  Google Scholar 

  • Wu, Z.Y., Lemaux, S., Moreau, P., Gressier, P., Lemoigno, F., and Ouvrard, G. (1997), “XANES study of the charge transfer upon lithium intercalation into lamellar transition metal dichalcogenides”, Journal de Physique IV 7, 257–258.

    Google Scholar 

  • Yang, D., Westreich, P., and Frindt, R.F. (1999), “Transition metal dichalcogenide/polymer nanocomposites”, Nanostructured Materials 12, 467–470.

    Article  Google Scholar 

  • Yeh, J.J., and Lindau, I. (1985), “Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103”, At. Data Nucl. Data Tables 32, 1–55.

    Article  Google Scholar 

  • Zanini, M., Shaw, J.L., and Tennenhouse, G.J.(1981), “The behaviour of Na-TiS2 and Na-TiS3 as solid solution electrodes”, J. Electrochem. Soc. 128, 1647–1650.

    Article  Google Scholar 

  • Zonneville, M.C., Hoffmann, R., and Harris, S. (1988), “Thiophene hydrodesulfurization on MoS2; theoretical aspects”, Surf. Sci. 199, 320–360.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaegermann, W., Tonti, D. (2002). Surface Science Investigations of Intercalation Reactions with Layered Metal Dichalcogenides. In: Julien, C., Pereira-Ramos, J.P., Momchilov, A. (eds) New Trends in Intercalation Compounds for Energy Storage. NATO Science Series, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0389-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0389-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0595-4

  • Online ISBN: 978-94-010-0389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics