Skip to main content

Radiometric chronology of the Moon and Mars

  • Chapter
Book cover The Century of Space Science

Abstract

“How old is the Earth?” was a topic of scientific inquiry in the late nineteenth century. In the twentieth century the question became “How old are the Earth and other objects in the Solar System?” Related questions are: “How old is the Solar System?”; “How has the Earth changed over geologic time?”; and “How have the planetary bodies in the Solar System changed over time?” Also, “What has made Earth unique in our Solar System?” With the aid of spacecraft-acquired data and samples, and through the study of lunar and Martian meteorites, we are beginning to answer some of these questions as they relate to the Moon and Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, L. (1949). Measuring geologic time by the strontium method.Geological Society America Bulletin, 60, 217–266.

    Article  Google Scholar 

  2. Albee, A.L., Burnett, D.S., Chodos, A.A., Eugster, O.A., Huneke, J.C.,Papanastassiou, D.A., Podosek, F.A., Russ, G.P. III., Sanz, H.G., Tera, T.and Wasserburg, G.J. (1970). Ages, irradiation history, and chemical composition of lunar rocks from the Sea of Tranquility. Science, 167,463–466.

    Article  ADS  Google Scholar 

  3. Aldrich, L.T. and Nier, A.O. (1948). Argon 40 in potassium minerals.Physical Review, 74, 876–877.

    Article  ADS  Google Scholar 

  4. Aldrich, L.T. and Wetherill, G.W. (1958). Geochronology by radioactive decay. Annual Review of Nuclear Science, 8, 257–298.

    Article  ADS  Google Scholar 

  5. Aldrich, L.T., Wetherill, G.W., Tilton, G.R. and Davis, G.L. (1956). Half-life of Rb87. Physical Review, 103, 1045–1047.

    Article  ADS  Google Scholar 

  6. Alibert, C., Norman, M.D. and McCulloch, M.T. (1994). An ancient age for a ferroan anorthosite clast from lunar breccia 67016. Geochimica et Cosmochimica Acta, 58, 2921–2926.

    Article  ADS  Google Scholar 

  7. Allègre, C.J., Manhès, G. and Göpel, C. (1995). The age of the Earth.Geochimica et Cosmochimica Acta, 59, 1445–1456.

    Article  ADS  Google Scholar 

  8. Anders, E. and Zinner, E. (1993). Interstellar grains in primitive meteorites:Diamond, silicon, carbide, and graphite. Meteoritics, 28, 490–514.

    ADS  Google Scholar 

  9. Apollo 16 Preliminary Science Report (1972). NASA SP-315, Scientific and Technical Information Office, NASA, Washington DC.

    Google Scholar 

  10. Apollo 17 Preliminary Science Report (1973). NASA SP-330, Scientific and Technical Information Office, NASA, Washington DC.

    Google Scholar 

  11. Arrol, W.J., Jacobi, R.B. and Paneth, F.A. (1942). Meteorites and the age of the Solar System. Nature, 28, 235–238.

    Article  ADS  Google Scholar 

  12. Aston, F.W. (1921). The mass spectra of the alkali elements. Philosophical Magazine Series 6, 42, 430–441.

    Google Scholar 

  13. Aston, F.W. (1927). The constitution of ordinary lead. Nature, 120, 224.

    Article  ADS  Google Scholar 

  14. Aston, F.W. (1929). The mass spectrum of uranium lead and the atomic weight of proactinium. Nature, 123, 313.

    Article  ADS  Google Scholar 

  15. Baldwin, R.B. (1981). On the origin of the planetesimals that produced the multi-ring basins. Proceedings of the Lunar and Planetary Science conference, 12A, 19–28.

    Google Scholar 

  16. Becquerel, H. (1896). Sur les radiations èmises par phosphorescence. Comptes Rendues de l’Académie des Sciences, 122, 420–421.

    Google Scholar 

  17. Begemann, F., Geiss, J. and Hess, D.C. (1957). Radiation age of a meteorite from cosmic-ray-produced He3 and H3. Physical Review, 107, 540–542.

    Article  ADS  Google Scholar 

  18. Begemann, F., Ludwig, K.R., Lugmair, G.W., Min, K., Nyquist, L.E., Patchett, P.J., Renne, P.R., Shih, C.-Y., Villa, I.M. and Walker, R.J. (2000). Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta, 65, 111–121.

    Article  ADS  Google Scholar 

  19. Bell, J.F., III, McSween, H.Y., Jr, Crisp, J.A., Morris, R.V., Murchie, S.L., Bridges, N.T., Johnson, J.R., Britt, D.T., Golombek, M.P., Moore, H.J., Ghosh, A., Bishop, J.L., Anderson, R.C., Brückner, J., Economou, T., Greenwood, J.P., Gunnlaugsson, H.P., Hargraves, R.M., Hviid, S., Knudsen, J.M., Madsen, M.B., Reid, R., Rieder, R. and Soderblom, L. (2000). Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. Journal of Geophysical Research, 105, 1721–1755.

    Article  ADS  Google Scholar 

  20. Binzel, R.P. and Xu, S. (1993). Chips off asteroid 4 Vesta: Evidence for the parent body of basaltic achondritic meteorites. Science, 260, 186–191.

    Article  ADS  Google Scholar 

  21. Bogard, D.D. (1995). Impact ages of meteorites: A synthesis. Meteoritics, 30, 244–268.

    ADS  Google Scholar 

  22. Bogard, D.D. and Garrison, D.H. (1995). 39Ar-40Ar age of the Ibitira eucrite and constraints on the time of pyroxene equilibration. Geochimica et Cosmochimica Acta, 59, 4317–4322.

    Article  ADS  Google Scholar 

  23. Bogard, D.D. and Garrison, D.H. (1999). Argon-39-argon-40 “ages” and trapped argon in Martian shergottites, Chassigny, and Allan Hills 84001. Meteoritics and Planetary Science, 34, 451–473.

    Article  ADS  Google Scholar 

  24. Bogard, D.D., Garrison, D.H. and Nyquist L.E. (2000). 39Ar-40Ar ages of lunar highland rocks and meteorites (abstract). Lunar and Planetary Science XXXI, CD-ROM 1138.

    Google Scholar 

  25. Bogard, D.D., Garrison, D.H., Shih, C.-Y. and Nyquist L.E. (1994). 39Ar-40Ar dating of two lunar granites: The age of Copernicus. Geochimica et Cosmochimica Acta, 58, 3093–3100.

    Article  ADS  Google Scholar 

  26. Bogard, D.D., Husain, L. and Nyquist, L.E. (1979). 40Ar-39Ar age of the Shergotty achondrite and implications for its post-shock thermal history. Geochimica et Cosmochimica Acta, 43, 1047–1056.

    Article  ADS  Google Scholar 

  27. Bogard, D.D. and Johnson, P. (1983). Martian gases in an Antarctic meteorite. Science, 221, 651–654.

    Article  ADS  Google Scholar 

  28. Borg, L.E., Connelly, J.N., Nyquist, L.E., Shih, C.-Y., Wiesmann, H. and Reese, Y. (1999b). The age of the carbonates in Martian meteorite ALH84001. Science, 286, 90–94.

    Article  ADS  Google Scholar 

  29. Borg, L.E., Norman, M., Nyquist, L., Bogard, D., Snyder, G., Taylor, L. and Lindstrom, M. (1999a). Isotopic studies of ferroan anorthosite 62236: A young lunar crustal rock from a light rare-earth-element-depleted source. Geochimica et Cosmochimica Acta, 63, 2679–2691.

    Article  ADS  Google Scholar 

  30. Borg, L.E., Nyquist, L.E., Taylor, L.A., Wiesmann, H. and Shih, C.-Y. (1997). Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochimica et Cosmochimica Acta, 61, 4915–4931.

    Article  ADS  Google Scholar 

  31. Boyce, J.M. and Johnson, D.A. (1978). Ages of flow units in the far eastern maria and implications for basin-filling history. Proceedings of the Lunar Science Conference, 9, 3275–3283.

    ADS  Google Scholar 

  32. Brown, H. (1947). An experimental method for the estimation of the age of the elements. Physical Review, 72, 348.

    Article  ADS  Google Scholar 

  33. Burgess, R. and Turner, G. (1998). Laser argon-40-argon-39 age determinations of Luna 24 mare basalts. Meteoritics and Planetary Science, 33, 921–935.

    Article  ADS  Google Scholar 

  34. BVSP (Basaltic Volcanism Study Project) (1981). Basaltic Volcanism on the Terrestrial Planets, Pergamon Press, New York.

    Google Scholar 

  35. Campbell, N. (1906). The radioactivity of potassium. Proceedings of the Cambridge Philosophical Society, 14, 557–567.

    Google Scholar 

  36. Campbell, N. (1908). The radioactivity of rubidium. Proceedings of the Cambridge Philosophical Society, 15, 11–12.

    Google Scholar 

  37. Campbell, N.R. and Wood, A. (1906). The radioactivity of the alkali metals. Proceedings of the Cambridge Philosophical Society, 14, 15–21.

    Google Scholar 

  38. Carlson, R.W. and Lugmair, G.W. (1981). Time and duration of lunar highlands crust formation. Earth and Planetary Science Letters, 52, 227–238.

    Article  ADS  Google Scholar 

  39. Carlson, R.W. and Lugmair, G.W. (2000). Timescales of planetesimal formation and differentiation based on extinct and extant radioisotopes. In R. Canup and K. Righter (eds), The Origin of the Earth and Moon, University of Arizona Press, Tucson, AZ, pp. 25–44.

    Google Scholar 

  40. Chadwick, J. (1932). The existence of a neutron. Proceedings of the Royal Society, A136, 692.

    Google Scholar 

  41. Chen, J.H. and Wasserburg, G.J. (1981). The isotopic composition of uranium and lead in Allende inclusions and meteorite phosphates. Earth and Planetary Science Letters, 52, 1–15.

    Article  ADS  Google Scholar 

  42. Chen, J.H. and Wasserburg, G.J. (1985). U-Th-Pb isotopic studies on meteorite ALH81005 and Ibitira (abstract). Lunar and Planetary Science XVI, 119–120.

    ADS  Google Scholar 

  43. Chen, J.H. and Wasserburg, G.J. (1996). Live 107Pd in the early Solar System and implications for planetary evolution. In A. Basu and S.R. Hart (eds), Earth Processes: Reading the Isotope Code, American Geophysical Union, pp. 1–20.

    Chapter  Google Scholar 

  44. Compston, W., Poster, J.J. and Gray, C.M. (1975). Rb-Sr ages of clasts from within Boulder 1, Station 2, Apollo 17. The Moon, 14, 445–462.

    Article  ADS  Google Scholar 

  45. Compston, W., Lovering, J.F. and Vernon, M.J. (1965). The rubidium-strontium age of the Bishopville aubrite and its component enstatite and feldspar. Geochimica et Cosmochimica Acta, 29, 1085–1099.

    Article  ADS  Google Scholar 

  46. Curie, M.S. (1898). Rayons émis par les composes de l’uranium et du thorium. Comptes Rendues de I’Académie des Sciences, 126, 1101–1103.

    Google Scholar 

  47. Curie, P. and Curie, M.S. (1898). Sur une substance nouvelle radio-active, contenue dans la pechblende. Comptes Rendues de I’Académie des Sciences, 127, 175–178.

    Google Scholar 

  48. Curie, P., Curie, Mme.P. and Bémont, G. (1898). Sur une nouvelle substance fortement radio-active, contenue dans la pechblende. Comptes Rendues de I’Académie des Sciences, 127, 1215–1217.

    Google Scholar 

  49. Dalrymple, G.B. and Ryder, G. (1993). 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. Journal of Geophysical Research, 98, 13085–13095.

    Article  ADS  Google Scholar 

  50. Dalrymple, G.B. and Ryder, G. (1996). 40Ar/39Ar age spectra of Apollo 17 highlands breccia samples by laser step-heating and the age of the Serenitatis basin. Journal of Geophysical Research, 101, 26069–26084.

    Article  ADS  Google Scholar 

  51. Dasch, E.J., Shih, C.-Y., Bansal, B.M., Wiesmann, H. and Nyquist, L.E. (1987). Isotopic analysis of basaltic fragments from lunar breccia 14321: Chronology and petrogenesis of pre-Imbrium mare volcanism. Geochimica et Cosmochimica Acta, 51, 3241–3254.

    Article  ADS  Google Scholar 

  52. Deutsch, A. and Stöffler, D. (1987). Rb-Sr analyses of Apollo 16 melt rocks and a new age estimate for the Imbrium basin: Lunar basin chronology and the early heavy bombardment of the Moon. Geochimica et Cosmochimica Acta, 51, 1951–1964.

    Article  ADS  Google Scholar 

  53. Dominik, B. and Jessberger, E.K. (1978). Early lunar differentiation: 4.42-AE old plagioclase clasts in Apollo 16 breccia 67435. Earth and Planetary Science Letters, 38, 407–415.

    Article  ADS  Google Scholar 

  54. Drake, M.J. (1979). Geochemical evolution of the eucrite parent body: Possible nature and evolution of asteroid 4-Vesta? In T. Gehrels (ed.), Asteroids, University of Arizona Press, Tucson, AZ, pp. 765–782.

    Google Scholar 

  55. Eberhardt, P., Geiss, J., Groegler, N. and Stettler, A. (1973). How old is the crater Copernicus? The Moon, 8, 104–114.

    Article  ADS  Google Scholar 

  56. Eklund, S. (1946) Studies in nuclear physics. Excitation by means of X-rays. Activity of Rb87. Arkiv för Matematik, Astronomi och Fysik, A33(14).

    Google Scholar 

  57. Eugster, O., Tera, F., Burnett, D.S. and Wasserburg, G.J. (1970a). Isotopic composition of gadolinium and neutron-capture effects in some meteorites. Journal of Geophysical Research, 75, 2753–2768.

    Article  ADS  Google Scholar 

  58. Eugster, O., Tera, F., Burnett, D.S. and Wasserburg, G.J. (1970b). The isotopic composition of Gd and the neutron-capture effects in samples from Apollo 11. Earth and Planetary Science Letters, 8, 20–30.

    Article  ADS  Google Scholar 

  59. Eugster, O., Weigel, A. and Polnau, E. (1997). Ejection times of Martian meteorites. Geochimica et Cosmochimica Acta, 61, 2749–2757.

    Article  ADS  Google Scholar 

  60. Faure, G. (1986). Principles of Isotope Geology, 2nd edn, Wiley, New York.

    Google Scholar 

  61. Fenner, C.N. and Piggot, C.S. (1929). The mass spectrum of lead from bröggerite. Nature, 123, 793–794.

    Article  ADS  Google Scholar 

  62. Flynn, K.F. and Glendenin, L.E. (1959). Half-life and beta spectrum of Rb87. Physical Review, 116, 744–748.

    Article  ADS  Google Scholar 

  63. Gast, P.W. (1962). The isotopic composition of strontium and the age of stone meteorites. Geochimica et Cosmochimica Acta, 26, 927–943.

    Article  ADS  Google Scholar 

  64. Geese-Bähnisch, I. and Huster, E. (1954). Neubestimmung der Halbwertszeit des 87Rb. Naturwissenschafien, 41, 495–496.

    Article  ADS  Google Scholar 

  65. Geiss, J., Eberhardt, P., Grögler, N., Guggisberg, S., Maurer, P. and Stettler, A. (1977). Philosophical Transactions of the Royal Society, A285, 151–158.

    ADS  Google Scholar 

  66. Geiss, J. and Hess, D.C. (1958). Argon-potassium ages and the isotopic composition of argon from meteorites. Astrophysical Journal, 127, 224–236.

    Article  ADS  Google Scholar 

  67. Gerling, E.K. and Pavlova, T.G. (1951). On the age of two stone meteorites. Doklady Akademii Nauk SSSR, 77, 85–86 (in Russian).

    Google Scholar 

  68. Göpel, C., Manhès, G. and Allègre, C.J. (1992). U-Pb study of the Acapulco meteorite (abstract). Meteoritics, 27, 226.

    Google Scholar 

  69. Göpel, C., Manhès, G. and Allègre C.J. (1994). U-Pb systematics of phosphates from equilibrated ordinary chondrites. Earth and Planetary Science Letters, 121, 153–171.

    Article  Google Scholar 

  70. Guggisberg, S., Eberhardt, P., Geiss, J., Grögler, N., Stettler, A., Brown, G.M. and Peckett A. (1979). Classification of the Apollo-11 mare basalts according to Ar39-Ar40 ages and petrological properties. Proceedings of the 10th Lunar Planetary Science Conference, pp. 1–39. Geochimica et Cosmochimica Acta, Suppl. 11, Pergamon.

    Google Scholar 

  71. Hahn, O. (1925). Die Isotopen des Urans. Zeitschrift für Anorganisch und Allgemeine Chemie, 147, 16–23.

    Article  Google Scholar 

  72. Hahn, O. and Rothenbach, M. (1919). Über die radioactivität des rubidiums. Physikalische Zeitschrift, 20, 194–202.

    Google Scholar 

  73. Hahn, O. and Walling, E. (1938). Über die Möglichkeit Geologischer Altersbestimmungen Rubidiumhaltiger Mineralien und Gesteine. Zeitschrift für Anorganisch und Allgemeine Chemie, 236, 78–82.

    Article  Google Scholar 

  74. Harper, C.T. (ed.) (1973). Geochronology: Radiometric dating of rocks and minerals. Benchmark Papers in Geology, Dowden, Hutchinson & Ross, Stroudsburg, Pa.

    Google Scholar 

  75. Harper, C.L., Jr, Nyquist, L.E., Bansal, B.M., Wiesmann, H. and Shih, C.-Y. (1995). Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science, 267, 213–216.

    Article  ADS  Google Scholar 

  76. Hartman, W.K. (1980). Dropping stones in magma oceans: Effects of early cratering. Proceedings of the Lunar Highlands Crust Conference, 155–171. Geochimica et Cosmochimica Acta, Suppl. 12, Pergamon.

    Google Scholar 

  77. Hartmann, W.K. (1999). Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor. Meteoritics and Planetary Science, 34, 167–177.

    Article  ADS  Google Scholar 

  78. Hartmann, W.K. and Berman, D.D. (2000). Elysium Planitia lava flows: Crater count chronology and geological implications. Journal of Geophysical Research, 105, 15011–15025.

    Article  ADS  Google Scholar 

  79. Hartmann, W.K., Ryder, G. Dones, L. and Grinspoon, D. (2000). The time-dependent intense bombardment of the primordial Earth/Moon system. In R. Canup and K. Righter (eds), Origin of the Earth and Moon, University of Arizona Press, Tucson, AZ, pp. 493–512.

    Google Scholar 

  80. Hemmendinger, A. and Smythe, W.R. (1937). The radioactive isotope of rubidium. Physical Review, 51, 1052–1053.

    Article  ADS  Google Scholar 

  81. Herzog, L.F. and Pinson, W.H. (1956). Rb/Sr age, elemental and isotopic abundance studies of stony meteorites. American Journal of Science, 254, 555–566.

    Article  Google Scholar 

  82. Hess, P.C. and Parmentier, E.M. (1995). A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism. Earth and Planetary Science Letters, 134, 501–514.

    Article  ADS  Google Scholar 

  83. Hevesey, G., Pahl, M. and Hosemann, R. (1933). Die Radioaktivität des Samariums. Zeitschrift für Physik, 83, 43–54.

    Article  ADS  Google Scholar 

  84. Holmes, A. (1913). The age of the Earth, Harper & Brothers, London.

    MATH  Google Scholar 

  85. Holmes, A. (1946). An estimate of the age of the Earth. Nature, 157, 680–684.

    Article  ADS  Google Scholar 

  86. Holmes, A. (1956). How old is the Earth? Transactions of the Edinburgh Geological Society, XVI, Part III, 313–333.

    Google Scholar 

  87. Hosemann, R. (1936). Die Radioaktivität des Samariums. Zeitschrift für Physik, 99, 405–427.

    Article  ADS  Google Scholar 

  88. Houtermans, F.G. (1946). Die isotopenhaüfigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschafien, 33, 185–186.

    Article  ADS  Google Scholar 

  89. Hubbard, N.J., Meyer, C., Jr, Gast, P.W. and Wiesmann, H. (1971). The composition and derivation of Apollo 12 soils. Earth and Planetary Science Letters, 10, 341–350.

    Article  ADS  Google Scholar 

  90. Huneke, J.C., Podosek, F. and Wasserburg, G.J. (1972). Gas retention and cosmic ray exposure ages of a basalt fragment from Mare Fecunditatis.Earth and Planetary Science Letters, 13, 375–383.

    Article  ADS  Google Scholar 

  91. Huneke, J.C. and Wasserburg, G.J. (1979). Sliva iz piroga (plum out of the pie): K/Ar evidence from Luna 20 rocks for lunar differentiation prior to 4.51 AE ago (abstract). Lunar and Planetary Science X, 598–600.

    ADS  Google Scholar 

  92. Inghram, M.G. (1954). Stable isotope dilution as an analytical tool.Annual Review of Nuclear Science, 4, 81–92.

    Article  ADS  Google Scholar 

  93. Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C. and Essling, A.M.(1971). Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4, 1889–1906.

    Article  ADS  Google Scholar 

  94. Jagoutz, E. and Wänke, H. (1986). Sr and Nd isotopic systematics of Shergotty meteorite. Geochimica et Cosmochimica Acta, 50, 939–953.

    Article  ADS  Google Scholar 

  95. Jagoutz, E., Sorowka, A., Vogel, J.D. and Wänke, H. (1994). ALH84001:Alien or progenitor of the SNC family? (abstract). Meteoritics, 29,478–479.

    ADS  Google Scholar 

  96. James, O.B. (1980). Rocks of the early lunar crust. Proceedings of the Lunar and Planetary Science Conference, 11, 365–393.

    ADS  Google Scholar 

  97. Jessberger, E.K., Huneke, J.C., Podosek, F.A. and Wasserburg, G.J. (1974).High resolution argon analysis of neutron-irradiated Apollo 16 rocks and separated minerals. Proceedings of the 5th Lunar Science Conference,1419–1449. Geochimica et Cosmochimica Acta, Suppl. 5, Pergamon.

    Google Scholar 

  98. Jessberger, E.K., Kirsten, T. and Staudacher, T. (1977). One rock and many ages -Further K-Ar data on consortium breccia 73215. Proceedings of the 8th Lunar Science Conference, 2567–2580. Geochimica et Cosmochimica Acta, Suppl. 8, Pergamon.

    Google Scholar 

  99. Jones, J.H. (1986). A discussion of isotopic systematics and mineral zoning in the shergottites: Evidence for a 180 Ma igneous crystallization age. Geochimica et Cosmochimica Acta, 50, 969–977.

    Article  ADS  Google Scholar 

  100. Kirsten, T., Krankowsky, D. and Zähringer, J. (1963). Edelgas-und Kalium-Bestimmungen an einer grösseren Zahl von Steinmeteoriten.Geochimica et Cosmochimica Acta, 27, 13.

    Article  ADS  Google Scholar 

  101. Lee, D.-C. and Halliday, A.N. (1997). Core formation on Mars and differentiated asteroids. Nature, 388, 854–857.

    Article  ADS  Google Scholar 

  102. Libby, W.F. (1957). Simple absolute measurement technique for beta radioactivity -Application to naturally radioactive rubidium. Analytical Chemistry, 29, 1566–1570.

    Article  Google Scholar 

  103. Lindstrom, M. (1999). Lunar and Martian meteorites: Suites, pairing, and implications. In Papers Presented to the Twenty-fourth Symposium on Antarctic Meteorites, 1–3 June 1999, National Institute of Polar Research, Tokyo.

    Google Scholar 

  104. Lindstrom, M.M., Mittlefehldt, D.W., Martinez, R.R., Lipschutz, M.E.and Wang, M.-S. (1991). Geochemistry of Yamato-82192, -86032 and -793274 lunar meteorites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 4, 12–32.

    Google Scholar 

  105. Longhi, J. and Ashwal, L. (1985). Two-stage models for lunar and terrestrial anorthosites: Petrogenesis without a magma ocean. Proceedings of the Lunar and Planetary Science Conference, 15, C571–C584.

    ADS  Google Scholar 

  106. Longhi, J. and Pan, V. (1989). The parent magmas of the SNC meteorites.Proceedings of the Lunar and Planetary Science Conference, 19,451–464.

    ADS  Google Scholar 

  107. Lugmair, G.W. (1974). Sm-Nd ages: A new dating method. Meteoritics, 9, 369.

    ADS  Google Scholar 

  108. Lugmair, G.W. and Galer, S.J. (1992). Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta, 56, 1673–1694.

    Article  ADS  Google Scholar 

  109. Lugmair, G.W. and Marti, K. (1971). Neutron-capture effects in lunar gadolinium and the irradiation histories of some lunar rocks. Earth and Planetary Science Letters, 13, 32–42.

    Article  ADS  Google Scholar 

  110. Lugmair, G.W., Marti, K., Kurtz, J.P. and Scheinen, N.B. (1976). History and genesis of lunar troctolite 76535 or: How old is old? Proceedings of the 7th Lunar Science Conference, 2035–2054. Geochimica et Cosmochimica Acta, Suppl. 7, Pergamon.

    Google Scholar 

  111. Lugmair, G.W., Scheinen, N.B. and Marti, K. (1975). Sm-Nd age and history of Apollo 17 basalt 75075: Evidence for early differentiation of the lunar exterior. Proceedings of the Lunar Science Conference, 6, 1419–1429.

    ADS  Google Scholar 

  112. Lunar Sample Information Catalog, Apollo 15 (1971). MSC 03209, Manned Spacecraft Center, NASA, Houston, TX.

    Google Scholar 

  113. Lunatic Asylum (1970). Mineralogic and isotopic investigations on lunar rock 12013. Earth and Planetary Science Letters, 9, 137–163.

    Article  ADS  Google Scholar 

  114. Lunatic Asylum (1978). Petrology, chemistry, age and irradiation history of Luna 24 samples. In R.B. Merrill and J.J. Papike (eds), Mare Crisium: The View from Luna 24, Pergamon Press, New York, pp. 657–678.

    Google Scholar 

  115. MacPherson, G.J., Davis, A.M. and Zinner, E.K. (1995). The distribution of alunimum-26 in the early Solar System. Meteoritics, 30, 365–386.

    ADS  Google Scholar 

  116. Mattauch, J. (1937). Das Paar 87Rb-87Sr und die Isobarenregel. Naturwissenschaft, 25, 189–190.

    Article  ADS  Google Scholar 

  117. Maurer, P., Geiss, J., Grögler, N., Stettler, A., Brown, G.M., Peckett, A. and Krähenbühl, U. (1978). Pre-Imbrian craters and basins: Ages, compositions, and excavation depths of Apollo 16 breccias. Geochimica et Cosmochimica Acta, 42, 1687–1720.

    Article  ADS  Google Scholar 

  118. McGetchin, T.R., Settle, M. and Head, W. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters, 20, 226–236.

    Article  ADS  Google Scholar 

  119. McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R. and Zare, R.N. (1996). Search for past life on Mars: Possible relic biogenic activity in Martian meterorite ALH84001. Science, 273, 924–930.

    Article  ADS  Google Scholar 

  120. McNair, A. and Wilson, H.W. (1961). The half-life of rubidium-87. Philosophical Magazine, 6, 563–572.

    Article  ADS  Google Scholar 

  121. McSween, H.Y., Jr (1994). What we have learned about Mars from SNC meteorites. Meteoritics, 29, 757–779.

    ADS  Google Scholar 

  122. Merrihue, C. and Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.

    ADS  Google Scholar 

  123. Meyer, C., Jr, Brett, R., Hubbard, N.J., Morrison, D.A., McKay, D.S., Aitken, F.K., Takeda, H. and Schonfeld, E. (1971). Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. Proceedings of the 2nd Lunar Science Conference, 393–411. Geochimica et Cosmochimica Acta, Suppl. 2, Pergamon.

    Google Scholar 

  124. Meyer, C., Jr and Hubbard, N.J. (1970). High potassium, high phosphorous glass as an important rock type in the Apollo 12 samples (abstract). Meteoritics, 5, 210–211.

    ADS  Google Scholar 

  125. Meyer, C., Jr, Williams, I.S. and Compston, W. (1996). Uranium-lead ages for lunar zircons: Evidence for prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics and Planetary Science, 31, 370–387.

    ADS  Google Scholar 

  126. Minster, J.-F., Birck, J.-L. and Allègre, C.-J. (1982). Absolute age of formation of chondrites studied by the 87Rb-87Sr method. Nature, 300, 414–419.

    Article  ADS  Google Scholar 

  127. Misawa, K., Tatsumoto, M., Dalrymple, G.B. and Yanai, K. (1993). An extremely low U/Pb sources in the Moon: U-Th-Pb, Sm-Nd, Rb-Sr, and 40Ar/39Ar isotopic systematics and age of lunar meteorite Asuka 881757. Geochimica et Cosmochimica Acta, 57, 4687–4702.

    Article  ADS  Google Scholar 

  128. Mouginis-Mark, P.J., McCoy, T.J., Taylor, G.J. and Keil, K. (1992). Martian parent craters for the SNC meteorites. Journal of Geophysical Research, 97, 10,213–10,225.

    Google Scholar 

  129. Nier, A.O. (1935). Evidence for the existence of an isotope of potassium of mass 40. Physical Review, 48, 283–284.

    Article  ADS  Google Scholar 

  130. Nier, A.O. (1936). The isotopic constitution of rubidium, zinc, and argon. Physical Review, 49, 272.

    Article  ADS  Google Scholar 

  131. Nier, A.O. (1939a). The isotopic constitution of uranium and the half-lives of the uranium isotopes. I. Physical Review, 55, 150–153.

    Article  ADS  Google Scholar 

  132. Nier, A.O. (1939b). The isotopic constitution of radiogenic leads and the measurement of geological time. II. Physical Review, 55, 153–163.

    Article  ADS  MATH  Google Scholar 

  133. Nier, A.O. (1950). A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, and mercury. Physical Review, 79, 450–454.

    Article  ADS  Google Scholar 

  134. Nier, A.O. (1981). Some reminiscences of isotopes, geochronology, and mass spectromeztry. Annual Review of Earth and Planetary Science, 9, 1–17.

    Article  ADS  Google Scholar 

  135. Nier, A.O. (1989). Some reminiscences of mass spectrometry and the Manhattan Project. Journal of Chemical Education, 66, 385–388.

    Article  ADS  Google Scholar 

  136. Nier, A.O., Dunning, J.R., Booth, E.T. and Grosse A.V. (1940). Nuclear fission of separated uranium isotopes. Physical Review, 57, 546.

    Article  ADS  Google Scholar 

  137. Norman, M., Nyquist, L., Bogard, D., Borg, L., Wiesmann, H., Garrison, D., Reese, Y., Shih, C.-Y. and Schwandt, C. (2000). Age and origin of the highlands crust of the Moon: Isotopic and petrologic studies of a ferroan noritic anorthosite clast from Descartes Breccia 67215 (abstract). Lunar and Planetary Science XXXI, CD-ROM 1552.

    Google Scholar 

  138. Nyquist, L.E. (1977). Lunar Rb-Sr chronology. Physics and Chemistry of the Earth, 10, 103–142.

    ADS  Google Scholar 

  139. Nyquist, L.E. (1996). High-Ti volcanism and the lunar mantle. Meteoritics and Planetary Science, 31, 319–320.

    Google Scholar 

  140. Nyquist, L.E., Bansal, B., Wiesmann, H. and Shih, C.-Y. (1994). Neodymium, strontium and chromium isotopic studies of the LEW86010 and Angra dos Reis meteorites and the chronology of the angrite parent body. Meteoritics, 29, 872–885.

    ADS  Google Scholar 

  141. Nyquist, L.E., Bansal, B.M., Wiesmann, H. and Shih, C.-Y. (1995b). “Martians” young and old: Zagami and ALH84001 (abstract). Lunar and Planetary Science XXVI, 1065–1066.

    Google Scholar 

  142. Nyquist, L.E., Bansal, B.M., Wooden, J.L. and Wiesmann, H. (1977). Sr isotopic constraints on the petrogenesis of Apollo 12 mare basalts. Proceedings of the Lunar Science Conference, 8, 1383–1415.

    ADS  Google Scholar 

  143. Nyquist, L.E., Bogard, D.D., Wooden, J., Wiesmann, H., Shih, C.-Y., Bansal, B.M. and McKay, G.A. (1979c). Early differentiation, late magmatism, and recent bombardment on the shergottite parent planet (abstract). Meteoritics, 14, 502.

    ADS  Google Scholar 

  144. Nyquist, L.E., Borg, L.E. and Shih, C.-Y. (1998). The Shergottite age paradox and the relative probabilities for Martian meteorites of differing ages. Journal of Geophysical Research, 103, 31,445–31,455.

    Google Scholar 

  145. Nyquist, L.E., Reimold, W.U., Bogard, D.D., Wooden, J.L., Bansal, B.M., Wiesmann, H. and Shih, C.-Y. (1981). A comparative Rb-Sr, Sm-Nd, and K-Ar study of shocked norite 78236: Evidence of slow cooling in the lunar crust? Proceedings of the Lunar and Planetary Science conference, 12B, 67–97.

    ADS  Google Scholar 

  146. Nyquist, L.E. and Shih, C.-Y. (1992). The isotopic record of lunar volcanism. Geochimica et Cosmochimica Acta, 56, 2213–2234.

    Article  ADS  Google Scholar 

  147. Nyquist, L.E., Shih, C.-Y., Reese, Y., Wiesmann, H., Bogard, D., Ryder, G. and Garrison, D. (2000). Age and petrogenesis of Apollo 17 Group D basalt (abstract). Lunar and Planetary Science XXXI, CD-ROM 1667.

    Google Scholar 

  148. Nyquist, L.E., Shih, C.-Y., Wooden, J.L., Bansal, B.M. and Wiesmann, H. (1979a). The Sr and Nd isotopic record of Apollo 12 basalts: Implications for lunar geochemical evolution. Proceedings of the Lunar Science Conference, 10, 77–114.

    ADS  Google Scholar 

  149. Nyquist, L.E., Wiesmann, H., Bansal, B., Shih, C.-Y., Keith, J.E. and Harper, C.L., Jr (1995a). 146Sm-142Nd formation interval for the lunar mantle. Geochimica et Cosmochimica Acta, 59, 2817–2837.

    Article  ADS  Google Scholar 

  150. Nyquist, L.E., Wiesmann, H., Shih, C.-Y. and Dasch, J. (1996). Lunar meteorites and the lunar crustal Sr and Nd isotopic compositions (abstract). Lunar and Planetary Science XXVII, 971–972.

    Google Scholar 

  151. Nyquist, L.E., Wooden, J., Bansal, B., Wiesmann, H., McKay, G. and Bogard, D.D. (1979b). Rb-Sr age of the Shergotty achondrite and implications for metamorphic resetting of isochron ages. Geochimica et Cosmochimica Acta, 43, 1057–1074.

    Article  ADS  Google Scholar 

  152. Oberli, F., Huneke, J.C. and Wasserburg, G.J. (1979). U-Pb and K-Ar systematics of cataclysm and precataclysm lunar impactites (abstract).Lunar and Planetary Science X, 940–942.

    Google Scholar 

  153. Paneth, F. (1931). Uber die Zuverlässigkeit der “Heliummethode” und über das Alter von Eisenmeteoriten. Naturwissenschaften, 19, 164–165.

    Article  ADS  Google Scholar 

  154. Paneth, F.A., Reasbeck, P. and Mayne, K.I. (1952). Helium 3 content and age of meteorites. Geochimica et Cosmochimica Acta, 2, 300–303.

    Article  ADS  Google Scholar 

  155. Papanastassiou, D.A., DePaolo, D.J. and Wasserburg, G.J. (1977). Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility. Proceedings of the 8th Lunar Science Conference, 1639–1672.Geochimica et Cosmochimica Acta, Suppl. 8, Pergamon.

    Google Scholar 

  156. Papanastassiou, D.A. and Wasserburg, G.J. (1969). Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth and Planetary Science Letters,5, 361–376.

    Article  ADS  Google Scholar 

  157. Papanastassiou, D.A. and Wasserburg G.J., (1972). Rb-Sr age of a lunar 16 basalt. Earth Planetary Science Letters, 13, 368–374.

    Article  ADS  Google Scholar 

  158. Papanastassiou, D.A. and Wasserburg, G.J., (1975a). A Rb-Sr study of Apollo 17 boulder 3: Dunite clast, microclasts, and matrix. Lunar Science, VI, 631–633.

    Google Scholar 

  159. Papanastassiou, D.A. and Wasserburg, G.J. (1975b). Rb-Sr study of a lunar dunite and evidence for early lunar differentiates. Proceedings of the 6th Lunar Science Conference, 1467–1489. Geochimica et Cosmochimica Acta, Suppl. 6, Pergamon.

    Google Scholar 

  160. Papanastassiou, D.A. and Wasserburg, G.J. (1976). Rb-Sr age of troctolite 76535. Proceedings of the 7th Lunar Science Conference, 2035–2054.Geochimica et Cosmochimica Acta, Suppl. 7, Pergamon.

    Google Scholar 

  161. Papanastassiou, D.A., Wasserburg, G.J. and Burnett, D.S. (1970). Rb-Sr ages of lunar rocks from the Sea of Tranquility. Earth Planetary Science Letters, 8, 1–19.

    Article  ADS  Google Scholar 

  162. Papike, J.J., Fowler, G.W., Layne, G.D. and Shearer, C.K., (1996). Ion microprobe investigation of plagioclase and orthopyroxene from lunar Mg-suite norites: Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution.Geochimica et Cosmochimica Acta, 60, 3967–3978.

    Article  ADS  Google Scholar 

  163. Papike, J.J., Ryder, G. and Shearer, C.K. (1998). Lunar samples. In P.H. Ribbe (ed.), Reviews in Mineralogy, Vol. 36: Planetary Materials,Mineralogical Society of America, Washington, DC, Chapter 5.

    Google Scholar 

  164. Patterson, C.C. (1956). Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–237.

    Article  ADS  Google Scholar 

  165. Patterson, C., Brown, H., Tilton, G. and Inghram, M. (1953).Concentration of uranium and lead and the isotopic composition of lead in meteoritic material. Physical Review, 92, 1234.

    Article  ADS  Google Scholar 

  166. Pieters, C.M. (1978). Mare basalt types on the front side of the Moon: A summary of spectral reflectance data. Proceedings of the Lunar and Planetary Science Conference, 9, 2825–2849.

    ADS  Google Scholar 

  167. Piggot, C.H. (1928). Lead isotopes and the problem of geologic time.Journal of the Washington Academy of Sciences, 18, 269–273.

    Google Scholar 

  168. Pinson, W.H., Jr, Schnetzler, C.C., Beiser, E., Fairbairn, H.W. and Hurley, P.M. (1965). Rb-Sr age of stony meteorites. Geochimica et Cosmochimica Acta, 29, 455–466.

    Article  ADS  Google Scholar 

  169. Podosek, F.A. and Cassen, P. (1994). Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula. Meteoritics, 29,6–25.

    ADS  Google Scholar 

  170. Podosek, F.A., Huneke, J.C., Gancarz, A.J. and Wasserburg, G.J. (1973).The age and petrography of two Luna 20 fragments and inferences for widespread lunar metamorphism. Geochimica et Cosmochimica Acta,37, 887–904.

    Article  ADS  Google Scholar 

  171. Premo, W.R. and Tatsumoto, M. (1991). U-Th-Pb isotopic systematics of lunar norite 78235. Proceedings of the Lunar and Planetary Science Conference, 21, 89–100.

    ADS  Google Scholar 

  172. Reynolds J.H. (1960). Determination of the age of the elements. Physical Review Letters, 4, 8–10.

    Article  ADS  Google Scholar 

  173. Reynolds, J.H. and Lipson, J. (1957). Rare gases from the Nuevo Laredo stone meteorite. Geochimica et Cosmochimica Acta, 12, 330–336.

    Article  ADS  Google Scholar 

  174. Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J.A.,Brückner, J., Dreibus, G. and McSween, H.Y., Jr (1997). The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: Preliminary results from the X-ray mode.Science, 278, 1771–1774.

    Article  ADS  Google Scholar 

  175. Ringwood, A.E. and Kesson, S.E. (1976). A dynamic model for mare basalt petrogenesis. Proceedings of the Lunar Science Conference, 7,1697–1722.

    ADS  Google Scholar 

  176. Romer, A. (1970). Radiochemistry and the Discovery of Isotopes, Dover,New York.

    Google Scholar 

  177. Rose, J.L. and Stranathan, R.K. (1936). Geologic time and isotopic constitution of radiogenic lead. Physical Review, 50, 792–796.

    Article  ADS  Google Scholar 

  178. Russell, A.S. (1924). Radio-active disintegration series and the relation of actinium to uranium. Philosophical Magazine, 46, 642–656.

    Google Scholar 

  179. Rutherford, E. (1906). The production of helium from radium and the transformation of matter. In Radioactive Transformations, Yale University Press, pp. 187–193. Silliman memorial lectures, Yale University Press.

    Google Scholar 

  180. Rutherford, E. (1929). Origin of actinium and age of the Earth. Nature,123, 313–314.

    Article  ADS  MATH  Google Scholar 

  181. Ryder, G. (1990). Lunar samples, lunar accretion and early bombardment of the Moon. EOS, Trans. AGU, 71, 313–323.

    Article  ADS  Google Scholar 

  182. Ryder, G. (1993). Catalog of Apollo 17 Rocks. Vol. 1 -Stations 2 and 3 (South Massif). Office of the Curator #87, NASA Lyndon B. Johnson Space Center, Houston, TX.

    Google Scholar 

  183. Ryder, G., Bogard, D. and Garrison, D. (1991). Probable age of Autolycus and calibration of lunar stratigraphy. Geology, 19, 143–146.

    Article  ADS  Google Scholar 

  184. Ryder, G., Koeberl, C. and Mojzsis, S.J. (2000). Heavy bombardment of the Earth at ~3.85 Ga: The search for petrographic and geochemical evidence. In R. Canup and K. Righter (eds), Origin of the Earth and Moon, University of Arizona Press, Tucson, AZ, pp. 475–492.

    Google Scholar 

  185. Schaeffer, O.A. and Husain, L. (1974). Chronology of lunar basin formation. Proceedings of the 5th Lunar Science Conference, 1541–1555.Geochimica et Cosmochimica Acta, Suppl. 5, Pergamon.

    Google Scholar 

  186. Schmidt, G.C. (1898). Über die vom Thorium und den Thorverbindungen ausgehende Strahlung. Verhandlungen der Physik Gesellschaft zu Berlin, 17(13), 14–16.

    Google Scholar 

  187. Schumacher, E. (1956). Alterbestimmungen von Steinmeteoriten mit der Rb-Sr Methode. Zcitschrift für Naturforschung, 11a, 206–212.

    ADS  Google Scholar 

  188. Shervais, J.W. and McGee, J.J. (1998). Ion and electron microprobe study of troctolites, norite, and anorthosites from Apollo 14: Evidence for urKREEP assimilation during petrogenesis of Apollo 14 Mg-suite rocks.Geochimica et Cosmochimica Acta, 62, 3009–3023.

    Article  ADS  Google Scholar 

  189. Shih, C.-Y., Nyquist, L.E., Bogard, D.D., Bansal, B.M., Wiesmann, H.,Johnson, P., Shervais, J.W. and Taylor, L.A. (1986). Geochronology and petrogenesis of Apollo 14 very high potassium mare basalts. Journal of Geophysical Research, 91(B4), D214–D228.

    Article  ADS  Google Scholar 

  190. Shih, C.-Y., Nyquist, L.E., Bogard, D.D., Dasch, E.J., Bansal, B.M. and Wiesmann, H. (1987). Geochronology of high-K aluminous mare basalt clasts from Apollo 14 breccia 14304. Geochimica et Cosmochimica Acta, 51, 3255–3271.

    Article  ADS  Google Scholar 

  191. Shih, C.-Y., Nyquist, L.E., Bogard, D.D., McKay, G.A., Wooden, J.L.,Bansal, B.M. and Wiesmann, H. (1982). Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005: Late magmatism on a geologically active planet. Geochimica et Cosmochimica Acta, 46, 2323–2344.

    Article  ADS  Google Scholar 

  192. Shih, C.-Y., Nyquist, L.E., Bogard, D.D. and Wiesmann, H. (1994). K-Ca and Rb-Sr dating of two lunar granites: Relative chronometer resetting. Geochimica et Cosmochimica Acta, 58, 3101–3116.

    Article  ADS  Google Scholar 

  193. Shih, C.-Y., Nyquist, L.E., Dasch, E.J., Bogard, D.D., Bansal, B.M. and Wiesmann, H. (1993). Ages of pristine noritic clasts from lunar breccias 15445 and 15455. Geochimica et Cosmochimica Acta, 57, 915–931.

    Article  ADS  Google Scholar 

  194. Shih, C.-Y., Nyquist, L.E., Reese, Y. and Wiesmann, H., 2000. Rb-Sr and Sm-Nd isotopic studies of two pristine alkali suite rocks (abstract). Lunar and Planetary Science XXXI, CD-ROM 1698.

    Google Scholar 

  195. Shih, C.-Y., Nyquist, L.E. and Wiesmann, H. (1999). Samarium-neodymium and rubidium-strontium systematics of nakhlite Governador Valadares. Meteoritics and Planetary Science, 34, 647–655.

    Article  ADS  Google Scholar 

  196. Signer, P. and Nier, A.O. (1960). The distribution of cosmic-ray-produced rare gases in iron meteorites. Journal of Geophysical Research, 65, 2947–2964.

    Article  ADS  Google Scholar 

  197. Smythe, W.R. and Hemmendinger, A. (1937). The radioactive isotope of potassium. Physical Review, 51, 178–182.

    Article  ADS  Google Scholar 

  198. Snyder, G.A., Borg, L.E., Nyquist, L.E. and Taylor, L.A. (2000a). Chronology and isotopic constraints on lunar evolution. In R.M. Canup and K. Righter (eds), The Origin of the Earth and Moon, University of Arizona Press, Tucson, AZ, pp. 493–512.

    Google Scholar 

  199. Snyder, G.A., Hall, C.M., Lee, D.-C., Taylor, L.A. and Halliday, A.N. (1996). Earliest high-Ti volcanism on the Moon: 40Ar-39Ar, Sm-Nd, and Rb-Sr isotopic studies of Group D basalts from the Apollo 11 landing site. Meteoritics and Planetary Science, 31, 328–334.

    ADS  Google Scholar 

  200. Snyder, G.A., Neal, C.R., Taylor, L.A. and Halliday, A.N. (1995a). Processes involved in the formation of magnesian-suite plutonic rocks from the highlands of Earth’s Moon. Journal of Geophysical Research, 100, 9365–9388.

    Article  ADS  Google Scholar 

  201. Snyder, G.A. and Taylor, L.A. (1993). Constraints on the genesis and evolution of the Moon’s magma ocean and derivative cumulate sources as supported by lunar meteorites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 246–267.

    Google Scholar 

  202. Snyder, G.A., Taylor, L.A. and Halliday, A.N. (1995b). Chronology and petrogenesis of the lunar highlands alkali suite. Geochimica et Cosmochimica Acta, 59, 1185–1203.

    Article  ADS  Google Scholar 

  203. Snyder, G.A., Taylor, L.A. and Neal, C.R. (1992). A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochimica et Cosmochimica Acta, 56, 3809–3823.

    Article  ADS  Google Scholar 

  204. Soddy, F. (1913–14). Intra-atomic charge. Nature, 92, 399–400.

    Article  ADS  Google Scholar 

  205. Solomon, S.C. and Longhi, J. (1977). Magma oceanography: 1. Thermal evolution. Proceedings of the Lunar Science Conference, 8, 583–599.

    ADS  Google Scholar 

  206. Spudis, P.D., Swann, G.A. and Greeley, R. (1988). The formation of Hadley Rille and implications for the geology of the Apollo 15 region. Proceedings of the Lunar and Planetary Science Conference, 18, 243–254.

    ADS  Google Scholar 

  207. Stettler, A., Eberhardt, P., Geiss, J., Grögler, N. and Maurer, P. (1973). Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. Proceedings of the 4th Lunar Science Conference, 1865–1888. Geochimica et Cosmochimica Acta, Suppl. 4, Pergamon.

    Google Scholar 

  208. Stettler, A., Eberhardt, P., Geiss, J., Grögler, N. and Maurer, P. (1974). On the duration of lava flow activity in Mare Tranquilitatis. Proceedings of the 5th Lunar Science Conference, 1557–1570. Geochimica et Cosmochimica Acta, Suppl. 5, Pergamon.

    Google Scholar 

  209. Steiger, R.H. and Jäger, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.

    Article  ADS  Google Scholar 

  210. Sunshine, J.M., Pieters, C.M. and Head, J.W. (1994). New evidence for compositional diversity on the Marius Hills Plateau from Galileo multi-spectral imaging (abstract). Lunar and Planetary Science XXV, 1359–1360.

    Google Scholar 

  211. Swindle, T., Spudis, P.D., Taylor, G.J., Korotev, R., Nichols, R.H. and Olinger, C.T. (1991). Searching for Crisium basin ejecta: Chemistry and ages of Luna 20 impact melts. Proceedings of the Lunar and Planetary Science Conference, 21 167–184.

    ADS  Google Scholar 

  212. Tanaka, K.L. (1986). The stratigraphy of Mars. Journal of Geophysical Research Supplement, 91, E139–158.

    Article  ADS  Google Scholar 

  213. Tanaka, K.L., Scott, D.H. and Greeley, R. (1992). Global stratigraphy. In H. Kieffer, C. Snyder and M. Matthews (eds), Mars, University of Arizona Press, Tucson, AZ, pp. 345–382.

    Google Scholar 

  214. Taylor, L.A., Shervais, J.W., Hunter, R.H., Shih, C.-Y., Bansal, B.M.,Wooden, J., Nyquist, L.E. and Laul, J.C. (1983). Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth and Planetary Science Letters,66, 33–47.

    Article  ADS  Google Scholar 

  215. Taylor, S.R. (1975). Lunar Science: A Post Apollo View, Pergamon.

    Google Scholar 

  216. Taylor, S.R. (1982). Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston, TX.

    Google Scholar 

  217. Tera, F., Papanastassiou, D.A. and Wasserburg, G.J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22,1–21.

    Article  ADS  Google Scholar 

  218. Thompson, F.C. and Rowlands, S. (1943). Dual decay of potassium.Nature, 152, 103.

    Article  ADS  Google Scholar 

  219. Thomson, J.J. (1913). Some further applications of the method of positive rays. Nature, 91, 333–337.

    Google Scholar 

  220. Tonks, W.B. and Melosh, H.J. (1992). Core formation by giant impacts.Icarus, 100, 326–346.

    Article  ADS  Google Scholar 

  221. Treiman, A.H. (1986). The parental magma of the Nakhla achondrite:Ultrabasic volcanism on the shergottite parent body. Geochimica et Cosmochimica Acta, 50, 1061–1070.

    Article  ADS  Google Scholar 

  222. Treiman, A.H. (1995). A petrographic history of Martian meteorite ALH84001: Two shocks and an ancient age. Meteoritics, 30, 294–302.

    ADS  Google Scholar 

  223. Treiman, A.H., Gleason, J.D. and Bogard, D.D. (2000). The SNC meteorites are from Mars. Planetary and Space Sciences, 48, 1213–1230.

    Article  ADS  Google Scholar 

  224. Turner, G. (1970a). Argon-40/argon-39 dating of lunar rock samples.Science, 167, 466–468.

    Article  ADS  Google Scholar 

  225. Turner, G. (1970b). Argon-40/argon-39 dating of lunar rock samples.Proceedings of the Apollo 11 Lunar Science Conference, 2, 1665–1684.

    ADS  Google Scholar 

  226. Turner, G. (1977). Potassium-argon chronology of the Moon. Physics and Chemistry of the Earth, 10, 145–195.

    Google Scholar 

  227. Turner, G., Huneke, J.C., Podosek, F.A. and Wasserburg, G.J. (1971).40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples.Earth and Planetary Science Letters, 12, 19–35.

    Article  ADS  Google Scholar 

  228. Turner, G., Huneke, J.C., Podosek, F.A. and Wasserburg, G.J. (1972).Ar40-Ar39 systematics in rocks and separated minerals from Apollo 14.Proceedings of the 3rd Lunar Science Conference, 1589–1612.Geochimica et Cosmochimica Acta, Suppl. 3, Pergamon.

    Google Scholar 

  229. Turner, G., Knott, S.F., Ash, R.D. and Gilmour, J.D. (1997). Ar-Ar chronology of the Martian meteorite ALH84001: Evidence for the timing of the early bombardment of Mars. Geochimica et Cosmochimica Acta, 61, 3835–3850.

    Article  ADS  Google Scholar 

  230. Urey, H.C. (1951). The origin and development of the Earth and other terrestrial planets. Geochimica et Cosmochimica Acta, 1, 209–277.

    Article  ADS  Google Scholar 

  231. Urey, H.C. (1952). The Planets,Yale University Press.

    Google Scholar 

  232. Von Weizsäcker, C.F. (1937). Über die Möglichkeit eines dualen ß-Zerfalls von Kalium. Physikalische Zeitschrift, 38, 623–624.

    Google Scholar 

  233. Wadhwa, M. and Lugmair, G.W. (1996). The formation age of carbonates in ALH84001 (abstract). Meteoritics, 31, A145.

    Google Scholar 

  234. Walker, D. (1983). Lunar and terrestrial crust formation. Proceedings of the Lunar and Planetary Science Conference, 14, B17–B25.

    ADS  Google Scholar 

  235. Warren, P.H. (1988). The origin of pristine KREEP: Effects of mixing between urKREEP and the magmas parental to the Mg-rich cumulates.Proceedings of the Lunar and Planetary Science Conference, 18, 233–241.

    ADS  Google Scholar 

  236. Warren, P.H. (1993). A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. American Mineralogist, 78,360–376.

    ADS  Google Scholar 

  237. Warren, P.H. (1994). Lunar and Martian delivery services. Icarus, 111,338–363.

    Article  ADS  Google Scholar 

  238. Warren, P.H. and Wasson, J.T. (1977). Pristine nonmare rocks and the nature of the lunar crust. Proceedings of the Lunar Science Conference,8, 2214–2235.

    ADS  Google Scholar 

  239. Warren, P.H. and Wasson, J.T. (1979). The origin of KREEP. Reviews of Geophysics and Space Physics, 17, 73–88.

    Article  ADS  Google Scholar 

  240. Wasserburg, G.J. and Burnett, D.S. (1969). The status of isotopic age determinations on iron and stone meteorites. In P.M. Millman (ed.),Meteorite Research, Reidel, Dordrecht, pp. 467–479.

    Google Scholar 

  241. Wasserburg, G.J., Burnett, D.S. and Frondel, C. (1965). Strontium-rubidium age of an iron meteorite, Science, 150, 1814.

    Article  ADS  Google Scholar 

  242. Wasserburg, G.J., Fowler, W.A. and Hoyle, F. (1960). Duration of nucleosynthesis. Physical Review Letters, 4, 112–114.

    Article  ADS  Google Scholar 

  243. Wasserburg, G.J. and Hayden, R.J. (1954). The branching ratio of K40.Physical Review, 93, 645.

    Article  ADS  Google Scholar 

  244. Wasserburg, G.J. and Hayden, R.J. (1955a). A40-K40 dating. Geochimica et Cosmochimica Acta, 7, 51–60.

    Article  ADS  Google Scholar 

  245. Wasserburg, G.J. and Hayden, R.J. (1955b). Age of meteorites by the A40-K40 method. Physical Review Letters, 97, 86–87.

    ADS  Google Scholar 

  246. Wasserburg, G.J. and Hayden, R.J. (1955c). Time interval between nucleo-genesis and the formation of meteorites. Nature, 176, 130.

    Article  ADS  Google Scholar 

  247. Wasserburg, G.J., Papanastassiou, D.A., Nenow, E.V. and Bauman, C.A. (1969). A programmable magnetic field mass spectrometer with on-line data processing. Review of Scientific Instruments, 40, 288–295.

    Article  ADS  Google Scholar 

  248. Wasson, J.T. and Wetherill, G.W. (1979). Dynamical, chemical and isotopic evidence regarding the formation locations of asteroids and meteorites. In T. Gehrels (ed.), Asteroids, University of Arizona Press, Tucson, AZ, pp. 926–974.

    Google Scholar 

  249. Wetherill, G.W. (1986). Accumulation of the terrestrial planets and implications concerning lunar origin. In W.K. Hartmann, R. Phillips and G.J. Taylor (eds), Origin of the Moon, Lunar Planetary Institute, Houston, TX, pp. 519–550.

    Google Scholar 

  250. Wetherill, G.W., Aldrich, L.T. and Davis, G.L. (1955). 40Ar and 40K ratios of feldspars and micas from the same rock. Geochimica et Cosmochimica Acta, 8, 171–172.

    Article  ADS  Google Scholar 

  251. Wilhelms, D.E. (1987). The geologic history of the Moon. USGS Prof Paper 1348, US Government Printing Office, Washington, DC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nyquist, L.E., Bogard, D.D., Chi-Yu, S. (2001). Radiometric chronology of the Moon and Mars. In: Bleeker, J.A.M., Geiss, J., Huber, M.C.E. (eds) The Century of Space Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0320-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0320-9_55

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7196-0

  • Online ISBN: 978-94-010-0320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics