Skip to main content

Particulate and Dissolved Phosphorus Forms in Freshwater: Composition and Analysis

  • Conference paper
Phosphorus in Freshwater Ecosystems

Part of the book series: Developments in Hydrobiology ((DIHY,volume 48))

Abstract

In recent research, particulate and dissolved phosphorus components have been separated and characterized on the basis of their physical and chemical properties and partly by their origins.

Classical operationally defined monitoring variables (dissolved reactive phosphorus, dissolved un-reactive phosphorus and particulate phosphorus) are not congruent with known specific physical or chemical components of phosphorus in natural waters or with their bioavailability.

Physical isolation of true particles, colloids and molecules of various sizes is possible at present although it is not recommended for routine use.

Chemical characterization of particulate phosphorus is performed mainly by sediment extraction procedures (specialized for inorganic species) and - to a lesser degree - by cell extraction procedures (specialized for organic compounds). The extraction procedures are similar and physical preseparation or alternative procedures (e.g. enzymatic assays) are essential.

Smaller colloids and dissolved compounds are physically separated by column chromatography and are often chemically characterized by degradation on the addition of specific enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlgren, G., 1976. Jämförelse mellan olika metoder för bestämning av totalfosfor i naturvatten. Vatten 32: 38–44. (with English summary).

    CAS  Google Scholar 

  • Ahlgren, G., 1983. Comparison of methods for estimation of phyto-plankton carbon. Arch. Hydrobiol. 98: 489–508.

    CAS  Google Scholar 

  • Allan, R. J., 1979. Sediment-related fluvial transmission of contaminants: Some advances by 1979. Scientific ser. no 107. Environment Canada, 24 pp.

    Google Scholar 

  • Allen, H. E., T. E. Brisbin &K. O. Thomson, 1977. Cycling of dissolved organic phosphorus compounds in natural waters. WRC Res. Rep. no 120, 20 pp.

    Google Scholar 

  • Anderson, G., 1960. Factors affecting the estimation of phosphate esters in soil. J. Sci. Food Agric. 11: 497–503.

    CAS  Google Scholar 

  • Aoki, S. &S. Miyachi, 1964. Chromatographic analysis of acid-soluble polyphosphates in Chlorella cells. PL Cell Physiol. 5: 241–250.

    CAS  Google Scholar 

  • Armstrong, F. A. J., P. M. Williams &J. D. H. Strickland, 1966. Photooxidation of organic matter in sea water by ultraviolet radiation, analytical and other applications. Nature 211: 481–483.

    CAS  Google Scholar 

  • Azad, H. S. &J. A. Borchardt, 1970. Variations in phosphate uptake by algae. Current Research. Envir. Sci. Technol. 4: 737–743.

    Google Scholar 

  • Barlow, J. P. &M. S. Glase, 1982. Partitioning of phosphorus between particles and water in a river outflow. In P. G. Sly (ed.), Sediment/Freshwater interaction. Developments in Hydrobiology 9, Dr. W. Junk, The Hague: 253–260.

    Google Scholar 

  • Berman, T., 1970. Alkaline phosphates and phosphorus availability in Lake Kinneret. Limnol. Oceanogr. 15: 663–674.

    CAS  Google Scholar 

  • Berman, T. &G. Moses, 1972. Phosphorus availability and alcaline phosphatase activities in two Israeli fish ponds. Hydrobiologia 40: 487–498.

    CAS  Google Scholar 

  • Bieleski, R. L. &R. E. Young, 1963. Extraction and separation of phosphate esters from plant tissues. Anal. Biochem. 6: 54–68.

    CAS  Google Scholar 

  • Bloesch, J., 1974. Sedimentation und Phosphorhaushalt im Vierwaldstättersee (Harwer Bucht) und im Rotsee. Schweiz. Z. Hydrol. 36: 71–186.

    CAS  Google Scholar 

  • Bloesch, J. &J. Gavrieli, 1984. The influence of filtration on particulate phosphorus analysis. Verh. int. Ver. Limnol. 22: 155–162.

    CAS  Google Scholar 

  • Bogárdi, J., 1974. Sediment transport in alluvial streams. Akadémiai Kiadó, Budapest, 826 pp.

    Google Scholar 

  • Broberg, B., M. Jansson &C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Boström, B., O. S. Jacobsen &K. Pettersson, 1988a. Phosphorus in sediments: speciation and analysis. Hydro-biologia 170: 91–101.

    Google Scholar 

  • Boström, B., G. Persson &B. Broberg 1988b. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.

    Google Scholar 

  • Broberg, O. &K. Pettersson, 1988. Analytical determination of orthophosphate in water. Hydrobiologia 170: 45–59.

    CAS  Google Scholar 

  • Browman, M. G., R. F. Harris, J. C. Rydena J. K. Syers, 1979. Phosphorus loading from urban stormwater runoff as a factor in lake eutrophication: I. Theoretical considerations and qualitative aspects. J. envir. Qual. 8: 561–566.

    CAS  Google Scholar 

  • Chang, S. C. &M. L. Jackson, 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.

    CAS  Google Scholar 

  • Christman, R. F. &R. A. Minear, 1971. Organics in lakes. In S. D. Faust &J. O. Hunter (eds) Organic compounds in aquatic environments. Marcel Dekker Inc. NY: 119–143.

    Google Scholar 

  • Cole, J. J. &G. E. Likens, 1979. Measurements of mineralization of phytoplankton detritus in an oligotrophic lake. Limnol. Oceanogr. 24: 541–547.

    CAS  Google Scholar 

  • Cowen, W. J. &G. F. Lee, 1976. Phosphorus availability in particulate materials transported by urban runoff. J. Wat. Pollut. Cont. Fed. 48: 580–591.

    CAS  Google Scholar 

  • Currie, D. J. &J. Kalff, 1984. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    CAS  Google Scholar 

  • Danielsson, L. G., 1982. On the use of filters for distinguishing between dissolved and particulate fractions in natural waters. Wat. Res. 16: 179–182.

    CAS  Google Scholar 

  • DeHaan, H., T. DeBoer, J. Voerman, H. A. Kramer &J. R. Moed, 1984. Size classes of’dissolved’ nutrients in shallow, alkaline, humic and eutrophic Tjeukemeer, The Netherlands, as fractionated by ultra filtration. Verh. int. Ver. Limnol. 22: 876–881.

    CAS  Google Scholar 

  • DePinto, J.V., T. C. Young &S. C. Martin, 1981. Algal-available phosphorus in suspended sediments from lower Great Lakes tributaries. J. Great Lakes Res. 7: 311–325.

    CAS  Google Scholar 

  • Dobolyi, E., 1980. Identification of different phosphorus forms and their role in the eutrophication process of lake Balaton. In J. Barica &L. R. Mur (eds), Hypertrophic ecosystems, Developments in Hydrobiology 2. Dr. W. Junk, The Hague: 13–22.

    Google Scholar 

  • Dong, A., G. V. Simsiman &G. Chesters, 1983. Particle-size distribution and phosphorus levels in soil, sediments and urban dust and dirt samples from the Menomonee River watershed, Wisconsin, USA. Wat. Res. 17: 569–577.

    CAS  Google Scholar 

  • Dorich, R. A. &D.W. Nelson, 1978. Algal availability of soluble and sediment phosphorus in drainage water of the Black Creek Watershed. In R. G. Christensen &C. D. Wilson (eds), Voluntary and regulatory approaches for nonpoint source pollution control. US EPA-905/9-78-001: 179–198.

    Google Scholar 

  • Downes, M. T. &H. W. Paerl, 1978. Separation of two dissolved reactive phosphorus fractions in lake water. J. Fish. Res. Bd Can. 35: 1636–1639.

    CAS  Google Scholar 

  • Droop, M. R., 1975. The nutrient status of algal cell in batch culture. J. mar. biol. Ass. UK 55: 541–555.

    CAS  Google Scholar 

  • Eisenreich, S.J. &D.E. Armstrong, 1980. Association of organic matter, iron and inorganic phosphorus in lake waters. Envir. International 3: 485–490.

    CAS  Google Scholar 

  • Eisenreich, S. J. &D. E. Armstrong, 1977. Chromatographic investigation of inositol phosphate esters in lake waters. Envir. Sci. Technol: 497–501.

    Google Scholar 

  • Enell, M. &S. Löfgren, 1988. Phosphorus in interstitial water: Methods and dynamics. Hydrobiologia 170: 103–132.

    CAS  Google Scholar 

  • Fisher, D. J., 1973a. Geochemistry of minerals containing phosphorus. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 141–152.

    Google Scholar 

  • Fisher, D. J., 1973b. Identification of phosphorus-bearing minerals. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 153–168.

    Google Scholar 

  • Fitzgerald, G. P. &T. C. Nelson, 1966. Extractive and enzymatic analysis for limiting or surplus phosphorus in algae. J. Phycol. 2: 32–37.

    Google Scholar 

  • Francko, D. A., 1984. Relationships between phosphorus functional classes and alkaline phosphatase activity in reservoir lakes. J. Freshw. Ecol. 2: 541–547.

    CAS  Google Scholar 

  • Francko, D. A. &R. T. Heath, 1979. Functionally distinct classes of complex phosphorus compounds in lake water. Limnol. Oceanogr. 24: 463–473.

    CAS  Google Scholar 

  • Gales, M. E., E. C. Julian, &R. C. Kroner, 1966. Method for quantitative determination of total phosphorus in water. J. am. Wat. Wks Ass. 58: 1363–1368.

    CAS  Google Scholar 

  • Golterman, H. L., 1960. Studies on the cycle of elements in fresh water. Acta Bot. Neerl. 9: 1–58.

    CAS  Google Scholar 

  • Golterman, H. L., 1975. Sediments. In H. L. Golterman, Developments in water science 2, Physiological limnology. Elsevier, Amsterdam: 403–429.

    Google Scholar 

  • Golterman, H. L., 1977. Sediments as a source of phosphate for algal growth. In H. C. Golterman (ed.), Interactions between sediments and fresh water. Dr. J. Junk, The Hague: 286–293.

    Google Scholar 

  • Hallegraeff, G. M., 1977. A comparison of different methods used for the quantitative evaluation of biomass of freshwater phytoplankton. Hydrobiologia 55: 145–165.

    CAS  Google Scholar 

  • Halmann, M., 1972. Analytical chemistry of phosphorus compounds. Interscience, NY, 850 pp.

    Google Scholar 

  • Harold, F. M., 1966. Inorganic polyphosphates in biology: structure, metabolism and function. Bact. Rev. 30: 772–794.

    PubMed  CAS  Google Scholar 

  • Harwood, J. E., R. A. vanStenderen &A. L. Kühn, 1969. A comparison of some methods for total phosphate analyzes. Wat. Res. 425-432.

    Google Scholar 

  • Hayes, F. R. &J. E. Phillips, 1958. Lake water and sediments IV: Radiophosphorus equilibrium with mud, plants, bacteria under oxidized and reduced conditions. Limnol. Oceanogr. 3: 459–475.

    Google Scholar 

  • Heath, R. T. &G. D. Cooke, 1975. The significance of alkaline phosphatase in a eutrophic lake. Verh. int. Ver. Limnol. 19: 959–965.

    Google Scholar 

  • Hem, J. D. &C. E. Robertson, 1961. Form and stability of aluminum hydroxyde complexes in dilute solution. US. Geol. Surv. Water Supply Pap. 1827-A, A24.

    Google Scholar 

  • Herbes, S. E., H. E. Allena K. H. Mancy, 1975. Enzymatic characterization of soluble organic phosphorus in lake water. Science 187: 432–434.

    PubMed  CAS  Google Scholar 

  • Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Mitt. int. Ver. Limnol. 21: 34–41.

    CAS  Google Scholar 

  • Hieltjes, A. H. M. &L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. Envir. Qual. 9: 405–407.

    CAS  Google Scholar 

  • Hobbie, J. E., 1973. Arctic limnology: A review. In M. E. Britton (ed.), Alaskan arctic tundra. Tech. paper No. 25, Arctic Inst, of N. Amer.

    Google Scholar 

  • Hooper, F. F., 1969. Nutrient cycling and productivity of dystrophic lake-bog system. Tech. Prog. Rep., AEC.

    Google Scholar 

  • Hooper, F. F., 1973. Origin and fate of organic phosphorus compounds in aquatic systems. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 179–201.

    Google Scholar 

  • Hsu, P. H., 1976. Comparison of iron (III) and aluminum in precipitation from solution. Wat. Res. 10: 903–907.

    CAS  Google Scholar 

  • Hutchinson, G. E., 1957. A treatise on limnology. J. Wiley &Sons, NY, 1015 pp.

    Google Scholar 

  • Ikawa, M., P. T. Borowski &A. Chakravarti, 1968. Choline and inositol distribution in algae and fungi. Appl. Mikro-biol. 16: 620–623.

    CAS  Google Scholar 

  • Jackson, T. A. &D. W. Schindler, 1975. The biogeochemis-try of phosphorus in an experimental lake environment: evidence for the formation of humic-metal-phosphate complexes. Verh. int. Ver. Limnol. 19: 211–221.

    Google Scholar 

  • Jeffries, D. S., F. P. Dieken &D. E. Jones, 1979. Performance of the autoclave digestion method for total phosphorus analysis. Wat. Res. 13: 275–279.

    CAS  Google Scholar 

  • Johansson, J. Ã…., 1983. Seasonal development of bacterio-plankton in two forest lakes in central Sweden. Hydro-biologia 101: 71–88.

    Google Scholar 

  • Juday, C. &E. A. Birge, 1931. A second report on the phosphorus content of Wisconsin lake waters. Trans. Wis. Acad. Sci., Arts Lett. 26: 233–248.

    Google Scholar 

  • Kanai, R., S. Aoki &S. Miyachi, 1965. Quantitative separation of inorganic polyphosphates in chlorella cells. PL Cell Physiol. 6: 467–473.

    CAS  Google Scholar 

  • Kittredge, J. S., M. Horiguchia,P. M. Williams, 1969. Aminophosphonic acids: biosynthesis by marine phytoplankton. Comp. Biochem. Physiol. 29: 859–863.

    PubMed  CAS  Google Scholar 

  • Kobori, H. &N. Taga, 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. exp. mar. Biol. Ecol. 36: 23–39.

    CAS  Google Scholar 

  • Kohnke, H., 1968. Soil physics. McGraw-Hill, NY, 224 pp.

    Google Scholar 

  • Kramer, J. R., S. E. Herbes &H. E. Allen, 1972. Phosphorus:Analysis of water biomass, and sediment. In H. E. Allen &J. R. Kramer (eds), Nutrients in natural waters. Wiley-Interscience, NY: 51–100.

    Google Scholar 

  • Krause, H. R., 1964a. Zur Chemie und Biochemie der Zersetzung von Süsswasserorganismen, unter besonderer Berücksichtigung des Abbaues der organischen Phosphorkomponenten. Verh. int. Ver. Limnol. 15: 549–561.

    CAS  Google Scholar 

  • Krause, H. R., 1964b. Zur Methodik einer differenzierten Bestimmung von organischen Phosphorkomponenten im Süsswasser-plankton. Arch. Hydrobiol./Suppl. 28: 282–290.

    Google Scholar 

  • Kuhl, A., 1960. Die Biologie der anorganischen kondensierten Phosphate. Ergebn. Biol. 23: 144–186.

    CAS  Google Scholar 

  • Lammers, W. T., 1971. Insoluble material in natural waters. In L. L. Ciaccom (ed.) Water and water pollution handbook 2. Marcel Dekker, NY: 593–635.

    Google Scholar 

  • Lammers, W. T., 1966. Natural water fractionation: Theory and practice. Verh. int. Ver. Limnol. 16: 452–458.

    Google Scholar 

  • Lean, D. R. S., 1976. Phosphate exchange and organic phosphorus excretion by freshwater algae. J. Fish Res. Bd Can. 33: 1312–1223.

    CAS  Google Scholar 

  • Lean, D. R. S., 1973. Movements of phosphorus between its biologically important forms in lake water. J. Fish Res. Bd. Can. 30: 1525–1536.

    CAS  Google Scholar 

  • Lee, G. F., R. A. Jones &W. Rast, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. C. Loehr, C. S. Martin &W. Rast (eds), Phosphorus management strategies for lakes. Ann Arbor Science, Ann Arbor: 259–308.

    Google Scholar 

  • Legg, J. O. &C. A. Black, 1955. Determination of organic phosphorus in soils. II. Ignition method. Soil Sci. Soc. Amer. Proc. 19: 139–143.

    CAS  Google Scholar 

  • Lewis, W. M., 1976. Surface/volume ratio: Implications for phytoplankton morphology. Science 192: 885–887.

    PubMed  Google Scholar 

  • Lijklema, L., 1980. Interaction of orthophosphate with iron (III) and aluminum hydroxides. Envir. Sci. Technol. 14: 537–541.

    CAS  Google Scholar 

  • Lohman, K. &P. Lange, 1956. Untersuchungen an kondensierten Phosphaten der Hefe. Biochem. Z. 328: 1–11.

    CAS  Google Scholar 

  • Lock, M. A., P. M. Wallis &H. B. N. Hynes, 1977. Colloidal organic carbon in running waters. Oikos 29: 1–4.

    Google Scholar 

  • Logan, T. J., 1982. Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. In P. G. Sly (ed.), Sediment/freshwater interaction, Developments in Hydrobiology 9, Dr W. Junk, The Hague: 519–530.

    Google Scholar 

  • Logan, T. J., T. O. Oloya &S. M. Yaksich, 1979. Phosphate characteristics and bioavailability of suspended sediments from streams draining into Lake Erie. J. Great Lakes Res. 5: 112–123.

    CAS  Google Scholar 

  • Lundgren, A., 1978. Experimental lake fertilization in the Kuokkel area, northern Sweden: changes in sestonic carbon and the role of phytoplankton. Ver. int. Ver. Limnol. 20: 863–686.

    Google Scholar 

  • Marvin, K. T., R. R. Proctor &R. A. Neal, 1972. Some effects of filtration on the determination of nutrients in fresh and salt water. Limnol. Oceanogr. 17: 777–784.

    CAS  Google Scholar 

  • McKelvey, V. E., 1973. Abundance and distribution of phosphorus in the litosphere. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 13–32.

    Google Scholar 

  • Menzel, D. W. &N. Corwin, 1965. The measurement of total phosphorus in seawater on the liberation of organically bound fractions by persulfate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Metha,N. C.,J. O.Legg,C. A. I. Goring &C. A.Black, 1954. Determination of organic phosphorus in soils: I. Extraction method. Soil Sci. Soc. Amer. Proc. 18: 443–449.

    Google Scholar 

  • Minear, R. A., 1972. Characterization of naturally occurring dissolved organo-phosphorus compounds. Envir. Sci. Technol. 6: 431–437.

    CAS  Google Scholar 

  • Miyachi, S., R. Kanai, S. Mihara, S. Miyachi &S. Aoki, 1964. Metabolic roles of inorganic polyphosphates in Chlorella cells. Biochim. Biophys. Acta 93: 625–634.

    PubMed  CAS  Google Scholar 

  • Nagarajah, S., A. M. Posner &J. P. Quirk, 1970. Competitive adsorption of phosphate with polygalakturonate and other organic anions on kaolinite and oxide surfaces. Nature 228: 83–84.

    PubMed  CAS  Google Scholar 

  • Németh, K., 1972. Bodenuntersuchung mittels Elektro-Ultrafiltration (EUF) mit mehrfach variierter Spannung. Lantwirtsch. Forsch. Sonderh. 27: 184–196.

    Google Scholar 

  • O’Connor, P. W. &J. K. Syers, 1975. Comparison of methods for the determination of total phosphorus in water containing particulate material. J. envir. Qual. 4: 347–350.

    Google Scholar 

  • Ogura, N., 1970. On the presence of 0.1-0.5 µ dissolved organic matter in seawater. Limnol. Oceanogr. 15: 476–479.

    CAS  Google Scholar 

  • Ohashi, S., 1975. Chromatography of phosphorus oxoacids. Pure and Applied Chemistry 44: 415–438.

    CAS  Google Scholar 

  • Ohasi, S., 1973. Chromatographic analysis of oxoacids of phosphorus. In E. J. Griffith, A. Beeton, J. M. Spencera, D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 303–340.

    Google Scholar 

  • Ohle, W., 1937. Kolloidgele als Nährstoffsregulanten der Gewässer. Naturwissenschaften 25: 471–474.

    Google Scholar 

  • Oliver, R. L., A. J. Kinnear &G. G. Ganf, 1981. Measurements of cell density of three freshwater phytoplankters by density gradient centrifugation. Limnol. Oceanogr. 26: 285–294.

    Google Scholar 

  • Olsen, Y., A. Jensen, H. Reinertsen, K. Y. Börsheim, M. Heldal, A. Langeland, 1986. Dependance of the rate of release of phosphorus by Zooplankton on the P:C ration in the food supply as calculated by a recycling model. Limnol. Oceanogr. 31: 34–44.

    Google Scholar 

  • Olsen, H. &M. Jansson, 1984. Stability of dissolved 32P-labelled phosphorus compounds in lake water and algal cultures -resistance to enzymatic treatment and algal uptake. Verh. int. Ver. Limnol. 22: 200–204.

    Google Scholar 

  • Olsen, S., 1967. Recent trends in the determination of ortho-phosphate in water. In H. L. Golterman o R. S. Clymo (eds), Chemical Environment in the Aquatic Habitat. N.V. Noord-Hollandse uitgevers Maatschappij, Amsterdam: 63–105.

    Google Scholar 

  • Olsen, S., 1958. Phosphate adsorption and isotopic exchange in lake muds. Verh. int. Ver. Limnol. 13: 915–922.

    CAS  Google Scholar 

  • Ongley, E. D., M. C. Bynoe &J. B. Percival, 1982. Physical and geochemical characteristics of suspended solids, Wilton Creek, Ontario. In P. G. Sly (ed.), Sediment/fresh water interaction. Developments in Hydrobiology 9. Dr. W. Junk, The Hague: 41–59.

    Google Scholar 

  • Overbeck, J., 1963. Untersuchungen zum Phosphathaushalt von Grünalgen VI. Ein Beitrag zum Polyphosphatstoffwechsel des Phytoplanktons. Ber. Deutsch. Bot. Gesellsch. 76: 276–286.

    Google Scholar 

  • Pearl, H. W. &M. T. Downes, 1978. Biological availability of low versus high molecular weight reactive phosphorus. J. Fish Res. Bd. Can. 35: 1639–1643.

    Google Scholar 

  • Pearl, H. W. &D. R. S. Lean, 1976. Visual observations of the uptake of phosphorus by lakewater plankton. J. Fish Res. Bd. Can. 33: 2805–2813.

    Google Scholar 

  • Persson, G., 1984. Characterization of particulate and colloidal phosphorus forms in water by continuous flow density graient centrifugation. Verh. int. Ver. Limnol. 22: 149–154.

    CAS  Google Scholar 

  • Peters, R. H., 1977. Availability of atmospheric orthophosphate. J. Fish Res. Bd. Can. 34: 918–924.

    CAS  Google Scholar 

  • Peters, R. H., 1978. Concentrations and kinetics of phosphorus fractions in water from streams entering Lake Memphremagog. J. Fish Res. Bd. Can. 35: 315–328.

    CAS  Google Scholar 

  • Peters, R. H., 1979. Concentrations and kinetics of phosphorus fractions along the trophic gradient of Lake Memphremagog. J. Fish Res. Bd. Can. 36: 970–979.

    CAS  Google Scholar 

  • Peters, R. H., 1981. Phosphorus availability in Lake Memphremagog and its tributaries. Limnol. Oceanogr. 26: 1150–1162.

    CAS  Google Scholar 

  • Phillips, J. E., 1964. The ecological role of phosphorus in waters with special reference to microorganisms. In H. Heukelekian &N. C. Dendero (eds), Principles and applications in aquatic microbiology. J. Wiley &Sons, NY: 61–81.

    Google Scholar 

  • Plumb, R. H. Jr. &G. F. Lee, 1973. A note on the ironorganic relationship in natural waters. Wat. Res. 7: 581–585.

    CAS  Google Scholar 

  • Price, C. A., L. R. Mendiola-Morgenthaler, M. Goldstein, E. N. Breden &R. R. L. Guillard, 1974. Harvest of planktonic marine algae by centrifugation into gradients of silica in the CF-6 continuous-flow zonal rotor. Biol. Bull. 147: 136–145.

    PubMed  CAS  Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Rhee, G. V., 1972. Competition between an algae and an aquatic bacterium for phosphate. Limnol. Oceanogr. 17: 505–514.

    CAS  Google Scholar 

  • Rhee, G. V., 1973. A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J. Phycol. 9: 495–506.

    CAS  Google Scholar 

  • Rigler, F. H., 1964. The phosphorus fractions and the turnover time of inorganic phosphorus in different types of lakes. Limnol. Oceanogr. 9: 511–518.

    CAS  Google Scholar 

  • Rigler, F. H., 1961. The uptake and release of inorganic phosphorus by Daphnia Magna Straus. Limnol. Oceanogr. 6: 165–174.

    CAS  Google Scholar 

  • Rössel, F. H., 1966. Die chromatographische Analyse von Phosphaten. II. Die Dunnschichtchromatographie der kondensierten Phosphate. Z. analyt. Chem. 197: 333–347.

    Google Scholar 

  • Saeger, V. W., O. Hicks, R. G. Kaley, P. R. Michael, J. P.Mieure &E. S. Tucker, 1979. Environmental fate of selected phosphate esters. Envir. Sci. Technol. 13: 840–844.

    CAS  Google Scholar 

  • Sakshaug, E., K. Andresen, S. Myklestad &Y. Olsen, 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish and fresh, as revealed by their chemical composition. J. Plankt. Res. 5: 175–196.

    CAS  Google Scholar 

  • Saunders, W. M. H., 1965. Phosphate retention by New Zealand soils and its relationship to free sesquioxides, organic matter and other soil properties. NZ J. agr. Res. 8: 30–57.

    CAS  Google Scholar 

  • Sheldon, R. W., 1972. Size separation of marine seston by membrane and glass fibers filters. Limnol. Oceanogr. 17: 494–498.

    Google Scholar 

  • Sheldon, R. W. &W. H. Sutcliffe, 1969. Retention of marine particles by screens and filters. Limnol. Oceanogr. 14: 441–444.

    Google Scholar 

  • Shukla, S. S., J. K. Syers, J. D. H. Williams, D. F. Armstrong &R. F. Hemis, 1971. Sorption of inorganic phosphate by lake sediments. Soil Sci. Soc. Amer. Proc. 31: 902–904.

    Google Scholar 

  • Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Ann. Rev. Oceanogr. mar. Biol. 8: 353–414.

    Google Scholar 

  • Sommer, U., 1984. Sedimentation of principal phytoplankton species in Lake Constance. J. Plankton. Res. 6: 1–14.

    Google Scholar 

  • Sommers, L. E., R. F. Harris, J. D. H. Williams, D. E. Armstrong &J. K. Syers, 1970. Determination of total organic phosphorus in lake sediments. Limnol. Oceanogr. 15: 301–304.

    CAS  Google Scholar 

  • Spencer, D. W. &F. T. Manheim, 1969. Ash content and composition of Millipore HA filters. U.S. Geol. Surv. Prof. Rap. 650-D: D288-D290.

    Google Scholar 

  • Stabel, H. H. &M. Geiger, 1985. Phosphorus adsorption to riverine suspended matter. Implications for the P-budget of Lake Constance. Wat. Res. 19: 1347–1352.

    CAS  Google Scholar 

  • Stabel, H. H. &C. Steinberg, 1976. Cleavage of macro-molecular allochtonous soluble organic matter. Naturwissenschaften 11: 553.

    Google Scholar 

  • Stevens, R. J. &B. M. Stewart, 1982a. Some components of particulate phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1591–1596.

    CAS  Google Scholar 

  • Stevens, R.J. &B. M. Stewart, 1982b. Concentration, fractionation and characterization of soluble organic phosphorus in river water entering Lough Neagh. Wat. Res. 16: 1507–1519.

    CAS  Google Scholar 

  • Steward, J. H. &M. E. Tate, 1971. Gel chromatography of soil organic phosphorus. J. Chromatogr. 60: 75–82.

    CAS  Google Scholar 

  • Strickland, J. D. H. &T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. Fish Res. Bd. Can. No. 167, 293 pp.

    Google Scholar 

  • Stumm, W. &J. J. Morgan, 1981. Aquatic Chemistry, 2nd ed. Wiley-Interscience, NY, 780 pp.

    Google Scholar 

  • Stumm, W. &L. Sigg, 1979. Kolloidchemische Grundlagen der Phosphor-Elimination in Fällung, Flockung und Filtration. Z. Wasser Abwasser Forsch. 12: 73–83.

    CAS  Google Scholar 

  • Syers, J. K., R. K. Harris &D. E. Armstrong, 1973. Phosphate chemistry in lake sediments. J. envir. Qual. 2: 1–14.

    CAS  Google Scholar 

  • Tarapchack, S. J., S. M. Bigelow &C. Rubitchun, 1982. Soluble reactive phosphorus measurements in Lake Michigan: Filtration artifacts. J. Great Lakes Res. 8: 550–557.

    Google Scholar 

  • Ueno, Y., N. Yoza &S. Ohashi, 1970. Gel chromatographic behavior of linear phosphates. J. Chromatog. 52: 481–485.

    CAS  Google Scholar 

  • Ulén, B, 1978a. Seston and sediment in Lake Norrviken I.Seston composition and sedimentation. Schweiz Z. Hydrol. 40: 262–286.

    Google Scholar 

  • Ulén, B, 1978b. Seston and sediment in Lake Norrviken II. Aerobic decomposition of algae. Schweiz Z. Hydrol 40: 104–118.

    Google Scholar 

  • Wagemann, R. &B. Graham, 1974. Membrane and glass fibre filter contamination in chemical analysis of fresh water. Wat. Res. 8: 407–412.

    CAS  Google Scholar 

  • Walsby, A. E. &C. S. Reynolds, 1980. Sinking and floating. In I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell, Oxford: 371–412.

    Google Scholar 

  • van Eck, G. T. M., 1982. Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, Hydrobio-logia 92: 665–681.

    Google Scholar 

  • Van Wazer, J. R., 1958. Phosphorus and its compounds. I: Chemistry. Interscience, NY, 954 pp.

    Google Scholar 

  • Van Wazer, J. R., 1961. Phosphorus and its compounds II. II: Technology biological functions and applications. Interscience, NY, 1091 pp.

    Google Scholar 

  • Van Wazer, J. R., 1973. The compounds of phosphorus. In E. J. Griffith, A. Beeton, J. M. Spencer &D. T. Mitchell (eds), Environmental phosphorus handbook. J. Wiley &Sons, NY: 169–177.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. Saunders, Toronto, 743 pp.

    Google Scholar 

  • White, E. &G. Payne, 1980. Distribution and biological availability of reactive high molecular weight phosphorus in natural waters in New Zealand. Can. J. Fish, aquat. Sci. 37: 664–669.

    CAS  Google Scholar 

  • Williams, J. D. H., J.-M. Jaquet &R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish Res. Bd. Can. 33: 413–429.

    CAS  Google Scholar 

  • Williams, J. D. H., H. Shear &R. L. Thomas, 1980. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol. Oceanogr. 25: 1–11.

    CAS  Google Scholar 

  • Williams, J. D. H., J. K. Syers &T. W. Walker, 1967. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci. Soc. Am. Proc. 35: 250–255.

    Google Scholar 

  • Williams, J. D. H., J. K. Syers, D. E. Armstrong &R. F. Harris, 1971. Characterization of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. Proc. 35: 556–561.

    CAS  Google Scholar 

  • Viner, A. B., 1982. A quantitative assessment of the nutrient phosphate transported by particles in a tropical river. Rev. Hydrobiol. Trop. 15: 3–8.

    Google Scholar 

  • Wyeth, R. K., 1973. Analyses of phosphorus in Lake Ontario sediment. Proc. 16:th Conf. Great Lakes Res.: 345–348.

    Google Scholar 

  • Young, T. C. &J. V. DePinto, 1982. Algal-availability of particulate phosphorus from diffuse and point sources in the lower Great Lakes basin. In P. G. Sly (ed.), Sediment/freshwater interaction. Developments in Hydrobiology 9. Dr. W. Junk, The Hague: 111–121.

    Google Scholar 

  • Young, T. C., J. V. De Pinto, S. E. Flint, M. S. Switzenbaum &J. K. Edzwald, 1982. Algal availability of phosphorus in municipal wastewaters. J. Wat. Pollut. Cont. Fed. 54: 1505–1516.

    CAS  Google Scholar 

  • Yoza, N., K. Ito, Y. Hirai &S. Ohashi, 1980. Optimization of high-preformance liquid chromatography of inorganic polyphosphates for routine analyzes. J. Chromatog. 196: 471–480.

    CAS  Google Scholar 

  • Zaiss, U., 1977. Daily rythm of regulation of polyphosphate metabolism in an algal bloom of Oscillatoria redekei. Verh. int. Ver. Limnol. 20: 2298–2301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gunnar Persson Mats Jansson

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this paper

Cite this paper

Broberg, O., Persson, G. (1988). Particulate and Dissolved Phosphorus Forms in Freshwater: Composition and Analysis. In: Persson, G., Jansson, M. (eds) Phosphorus in Freshwater Ecosystems. Developments in Hydrobiology, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3109-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3109-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7898-6

  • Online ISBN: 978-94-009-3109-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics