Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 30))

Abstract

Technetium-99m has nearly optimal characteristics as a radionuclide for diagnostic radiopharmaceuticals: (1) a low radiation dose to the patients due to the absence of a-and β-radiation and the short physical half-life (6.02 h), (2) the excellent quality of its scintigraphic images as a result of the favourable energy of its gamma radiation (140.5 keV) which is efficiently detected by the Nal(T1) crystals of conventional gamma cameras and on the other hand has a good tissue penetration and (3) its continuous availability as pertechnetate from a 99mMo- 99mTc generator. However, an inconvenience associated with technetium is the fact that it cannot simply replace a hydrogen atom as it is the case with halogens like 123I and 18F, nor can be a substitute for one of the other common atoms in biologically interesting compounds, i.e. carbon, nitrogen or oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sunberg MW, Meares CF, Goodwin DA, Diamanti CI. Chelating agents for the binding of metal ions to macromolecules. Nature 1974;250:587–8.

    Article  Google Scholar 

  2. Fritzberg A. Advances in 99mTc-labeling of antibodies. Nucl-Med 1987;26:7–12.

    CAS  Google Scholar 

  3. Hansen HJ, Jones AL, Grebenau R, Kunz A, Goldenberg DM. Labeling of anti-tumor antibodies and antibody fragments with Tc-99m. Cancer treatment research 1990; 51:233–44.

    CAS  Google Scholar 

  4. Delmon-Moingeon LI, Mahmood A, Davison A, Jones AG. Strategies for labeling monoclonal antibodies and antibody-like molecules with technetium-99m. J Nucl Biol Med 1991;35:47–59.

    PubMed  CAS  Google Scholar 

  5. Griffiths GL, Goldenberg DM, Jones AL, Hansen AJ. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjug Chem 1992;3:91–9.

    Article  PubMed  CAS  Google Scholar 

  6. Jurisson S, Berning D, Jia W, Ma D. Coordination compounds in nuclear medicine. Chem Rev 1993;93:1137–56.

    Article  CAS  Google Scholar 

  7. Khaw BA, Strauss HW, Carvalho A, Locke E, Gold HK, Haber E. 99mTc labeling of antibodies to cardiac myosin Fab and to human fibrinogen. J Nucl Med 1982; 23:1011–9.

    PubMed  CAS  Google Scholar 

  8. Paik CH, Murphy PR, Eckelman WC, Volkert WA, Reba RC. Optimization of the DTPA mixed-anhydride reaction with antibodies at low concentration. J Nucl Med 1983;24:932–6.

    PubMed  CAS  Google Scholar 

  9. Lanteigne D, Hnatowich DJ. The labeling of DTPA-coupled proteins with 99mTc. Int J Appl Radiat Isot 1984;35:617–21.

    Article  PubMed  CAS  Google Scholar 

  10. Childs RL, Hnatowich DJ. Optimum conditions for labeling of DTPA-coupled antibodies with technetium-99m. J Nucl Med 1985;26:293–9.

    PubMed  CAS  Google Scholar 

  11. Paik CH, Ebbert MA, Murphy PR et al. Factors influencing DTPA conjugation with antibodies by cyclic DTPA anhydride. J Nucl Med 1983;24:1158–63.

    PubMed  CAS  Google Scholar 

  12. Arano Y, Yokoyama A, Magata Y, Horiuchi K, Saji H, Torizuka K. In the procurement of stable 99mTc labeled protein using bifunctional chelating agent. Appl Radiat Isot 1986;37:587–92.

    Article  CAS  Google Scholar 

  13. Arano Y, Yokoyama A, Magata Y, Saji H, Horiuchi K, Torizuka K. Synthesis and evaluation of a new bifunctional chelating agent for 99mTc labeling of proteins: p-carboxyethylphenylglyoxal-di-(N-methylthiosemicarbazone). Nucl Med Biol 1986;12:425–30.

    Article  CAS  Google Scholar 

  14. Arano Y, Yokoyama A, Furukawa T et al. Technetium-99m-labeled monoclonal antibody with preserved immunoreactivity and high in vivo stability. J Nucl Med 1987;28:1027–33.

    PubMed  CAS  Google Scholar 

  15. Fritzberg AR, Abrams PG, Beaumier PL et al. Specific and stable labeling of antibodies with technetium-99m with a diamide dithiolate chelating agent. Proc Natl Acad Sci USA 1988;85:4025–9.

    Article  PubMed  CAS  Google Scholar 

  16. Visser GWM, Gerretsen M, Herscheid JDM et al. Labelling of monoclonal antibodies with rhenium-186 using MAG3 chelate for radioimmunotherapy of cancer. A technical protocol. J Nucl Med 1993;34:1953–63.

    PubMed  CAS  Google Scholar 

  17. Verbeke K, Hjelstuen O, Debrock E, Cleynhens B, De Roo M, Verbruggen A. Comparative evaluation of 99Tcm-Hynic-HSA and 99Tcm+MAG3-HSA as possible blood pool agents. Nucl Med Commun 1995;16:942–57.

    Article  PubMed  CAS  Google Scholar 

  18. Fritzberg AR. personal communication.

    Google Scholar 

  19. Guhlke S, Diekmann D, Zamora PO, Knapp FF, Biersack HJ. MAG3 p-nitrophenyl ester for 99mTc and 188Re labelling of amines and peptides. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale,1995:363–6.

    Google Scholar 

  20. Liu S, Edwards DS. New N2S2 diamidethiol and N3S triamidethiols as bifunctional chelating agents for labelling small peptides with technetium-99m. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale,1995:383–93.

    Google Scholar 

  21. Franz J, Volkert WA, Barefield EK, Holmes RA. The production of 99mTc-labeled conjugated antibodies using a cyclam-based bifunctional chelating agent. Nucl Med Biol 1987;14:569–72.

    CAS  Google Scholar 

  22. Ram S, Buchsbaum D. A peptide-based bifunctional chelating agent for 99mTc- and 186Re-labeling of monoclonal antibodies. Cancer Res 1994;3:769–73.

    Google Scholar 

  23. Liang FH, Virzi F, Hnatowich DJ. Serum stability and non-specific binding of technetium-99m labeled diaminodithiol for protein labeling. Nucl Med Biol 1987;14:555–61.

    CAS  Google Scholar 

  24. Efange SMN, Kung HF, Billings JJ, Blau M. Synthesis and biodistribution of 99mTc-labeled piperidinyl bis(aminoethanethiol) complexes: Potential brain perfusion imaging agents for single photon emission computed tomography. J Med Chem 1988;31:1043–7.

    Article  PubMed  CAS  Google Scholar 

  25. Walovitch RC, Hill TC, Garrity ST et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, Part 1: Pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 1989;30:1892–901.

    PubMed  CAS  Google Scholar 

  26. Verbruggen AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ, De Roo MJ. Technetium-99m-L,L-ethylenedicysteine: a renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med 1992;33:551–7.

    PubMed  CAS  Google Scholar 

  27. Lever SZ, Baidoo KE, Kramer AV, Burns HD. Synthesis of a novel bifunctional chelate designed for labeling proteins with technetium-99m. Tetrahedron Lett 1988;29:3219–22.

    Article  CAS  Google Scholar 

  28. Baidoo KE, Scheffel U, Lever SZ. 99mTc labeling of proteins: initial evaluation of a novel diaminedithiol bifunctional chelating agent. Cancer Research (Suppl) 1990;50:799s–803s.

    PubMed  CAS  Google Scholar 

  29. Baidoo KE, Lever SZ. Synthesis of a diaminedithiol bifunctional chelating agent for incorporation of technetium-99m into biomolecules. Bioconjug Chem 1990;1:132–7.

    Article  PubMed  CAS  Google Scholar 

  30. Baidoo KE, Stathis M, Scheffel U, Lever SZ, Wagner HN. High affinity Tc-labeled chemotactic peptides. J Nucl Med 1993;34:18P (abstract).

    Google Scholar 

  31. Baidoo KE, Lever SZ. Design and synthesis of a versatile precursor to neutral technetium and rhenium complexes. Tetrahedron Lett 1990;31:5701–4.

    Article  CAS  Google Scholar 

  32. Baidoo KE, Lever SZ, Scheffel U. Bifunctional chelator for facile preparation of neutral technetium complexes. Bioconjug Chem 1994;5:114–8.

    Article  PubMed  CAS  Google Scholar 

  33. Del Rosario RB, Jung Y-W, Baidoo KE, Lever SZ, Wieland DM. Synthesis and in vivo evaluation of a 99m/99Tc-DADT-benzovesamicol: a potential marker for cholinergic neurons. Nucl Med Biol 1994;21:197–203.

    Article  PubMed  Google Scholar 

  34. Lever SZ, Baidoo KE, Mahmood AM, Matsumura K, Schefel U, Wagner HN. Novel technetium ligands with affinity for the muscarinic cholinergic receptor. Nucl Med Biol 1994;21:157–64.

    Article  PubMed  CAS  Google Scholar 

  35. Lever SZ, Wagner HN. The status and future of technetium-99m radiopharmaceuticals. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale, 1995:649–59.

    Google Scholar 

  36. Eisenhut M, Brandau W, Missfeldt M. Synthesis and in vivo testing of a bromobutyl substituted 1,2,5,9-diazocycloundecane: a versatile precursor for new 99mTc-bis(aminoethanethiol) complexes. Nucl Med Biol 1989;8:805–11.

    Google Scholar 

  37. Eisenhut M, Missfeldt M, Lehmann WD, Karas M. Synthesis of a bis(aminoethanethiol) ligand with an activated ester group for protein conjugation and 99mTc labeling. J Labelled Compd Radiopharm 1991;29:1283–91.

    Article  CAS  Google Scholar 

  38. Eisenhut M, Lehmann WD, Becker W et al. Bifunctional NHS-BAT ester for antibody conjugation and stable technetium-99m labeling conjugation chemistry, immunoreactivity and kit formulatioa J Nucl Med 1996;37:362–70.

    PubMed  CAS  Google Scholar 

  39. Samnick S, Brandau W, Sciuk J, Steinsträsser A, Schober O. Synthesis, characterization and biodistribution of neutral and lipid-soluble 99mTc-bisaminoethanethiol spiperone derivatives: possible ligands for receptor imaging with SPECT. Nucl Med Biol 1995;22:573–83.

    Article  PubMed  CAS  Google Scholar 

  40. DiZio JP, Fiaschi R, Davison A, Jones AG, Katzenellenbogen JA. Progestin-rhenium complexes. metal-labeled steroids with high receptor binding affinity, potential receptor-directed agents for diagnostic imaging or therapy. Bioconjug Chem 1991;2:353–66.

    Article  PubMed  CAS  Google Scholar 

  41. DiZio JP, Anderson CJ, Davison A et al. Technetium- and rhenium-labeled progestins: synthesis, receptor binding and in vivo biodistribution of an 11ß-substituted progestin labeled with technetium-99 and rhenium-186. J Nucl Med 1992;33:558–69.

    PubMed  CAS  Google Scholar 

  42. O’Neil JP, Wilson SR, Katzenellenbogen JA. Preparation and structural characterization of monoamine-monoamide bis(thiol) oxo complexes of technetium(V) and rhenium(V). Inorg Chem 1994;33:319–23.

    Article  Google Scholar 

  43. O’Neil JP, Carlson KE, Anderson CJ, Welch MJ, Katzenellenbogen JA. Progestin radiopharmaceuticals labeled with technetium and rhenium: synthesis, binding affinity, and in vivo distribution of a new progestin N2S2-metal conjugate. Bioconjug Chem 1994;5:182–93.

    Article  PubMed  Google Scholar 

  44. Liang FH, Virzi F, Hnatowich DJ. The use of diaminodithiol for labellling small molecules with technetium-99m. Nucl Med Biol 1987;14:63–7.

    CAS  Google Scholar 

  45. Liang FH, Virzi F, Hnatowich DJ. Serum stability and non-specific binding of technetium-99m labeled diaminodithiol for protein labeling. Nucl Med Biol 1987;14:555–61.

    CAS  Google Scholar 

  46. Misra HK, Virzi F, Hnatowich DJ, Wright G. Synthesis of a novel diaminodithiol for labelling proteins and small molecules with technetium-99m. Tetrahedron Lett 1989;30:1885–8.

    Article  CAS  Google Scholar 

  47. Mach RH, Kung HF, Jungwiwattanaporn P, Guo Y-Z. A new synthesis of bis-aminoethanethiol (BAT) chelating agents containing a gamma carboxylate. Tetrahedron Lett 1989;30:4069–72.

    Article  CAS  Google Scholar 

  48. Fischman AJ, Babich JW, Strauss HW, A ticket to ride: peptide radiopharmaceuticals. J Nucl Med 1993;34:2253–63.

    PubMed  CAS  Google Scholar 

  49. Fischman AJ, Babich JW, Rubin HR. Infection imaging with technetium-99m-labeled chemotactic peptide analogs. Semin Nucl Med 1993;24:154–68.

    Article  Google Scholar 

  50. Lister-James J, McBride WJ, Buttram S et al. Technetium-99m chelate-containing receptor-binding peptides. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale, 1995:269–74.

    Google Scholar 

  51. Pearson DA, Lister-James J, McBride WJ et al. Somatostatin receptor-binding peptides labeled with technetium-99m: chemistry and initial biological studies. J Med Chem 1996;39:1361–71.

    Article  PubMed  CAS  Google Scholar 

  52. Pearson DA, Lister-James J, McBride WJ et al. Thrombus imaging using technetium-99m-labeled high-potency GPIIb/IIIa receptor antagonists. Chemistry and initial biological studies. J Med Chem 1996;39:1372–82.

    Article  PubMed  CAS  Google Scholar 

  53. Linder KE, Chan Y-W, Cyr JE, Malley MF, Nowotnik DP, Nunn AD. TcO(PnAO-1-(2-nitromidazole)) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization, and xanthine oxidase-catalyzed reduction. J Med Chem 1994;37:9–17.

    Article  PubMed  CAS  Google Scholar 

  54. Koch P, Mäcke HR. 99mTc labeled biotin conjugate in a tumor “pretargeting” approach with monoclonal anitibodies. Angew Chem Int Ed Engl 1992;31:1507–9.

    Article  Google Scholar 

  55. Maina T, Stolz B, Albert R, Bruns C, Koch P, Mäcke H. Synthesis, radiochemistry and biological evaluation of a new somatostatin analogue (SDZ 219–387) labelled with technetium-99m. Eur J Nucl Med 1994;21:437–44.

    Article  PubMed  CAS  Google Scholar 

  56. Maina T, Stolz B, Albert R, Nock B, Bruns C, Mäcke H. Synthesis, radiochemical and biological evaluation of 99mTc[N4-(D)Phe1]-octreotide, a new octreotide derivative with high affinity for somatostatin receptors. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale, 1995:395–400.

    Google Scholar 

  57. Nock B, Koch P, Evard F, Paganelli G, Mäcke H. 99mTcN4-lys-biotin, a new biotin derivative useful for pretargeted avidin-biotin immunoscintigraphy: synthesis, evaluation and comparison with other 99mTc-biotin conjugates. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 4. Padova: SGEditoriale, 1995:429–36.

    Google Scholar 

  58. Schwartz DA, Abrams MJ, Hauser MM et al. Preparation of hydrazino-modified proteins and then-use for synthesis of 99mTc-protein conjugates. Bioconjug Chem 1991;2.333–6.

    Article  PubMed  CAS  Google Scholar 

  59. Abrams MJ, Juweid M, tenKate CI et al. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 1990;31:2022–8.

    PubMed  CAS  Google Scholar 

  60. Babich JW, Solomon H, Pike MC et al. Technetium-99m-labeled hydrazino nicotinamide derivatized chemotactic peptide analogs for imaging focal sites of bacterial infection. J Nucl Med 1993;34:1967–74.

    Google Scholar 

  61. Liu S, Edwards DS, Looby RJ et al. Labeling a hydrazino nicotinamide-modified cyclic Ilb/IIIa receptor antagonist with 99mTc using aminocarboxylates as coligands. Bioconjug Chem 1996;7:63–71.

    Article  PubMed  CAS  Google Scholar 

  62. Goedemans WT, Panek KJ, Ensink GJ, de Jong MTM. A new, simple method for labelling of proteins with 99mTc by derivatization with l-imino-4-mercaptobutyl groups. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 3: Verona: Cortina International and New York: Raven Press, 1990:595–604.

    Google Scholar 

  63. Joins E, Bastin B, Thornback JR. A new method for labelling of monoclonal antibodies, their fragments and other proteins with technetium-99m. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine 3: Verona: Cortina International and New York, Raven Press: 1990:609–14.

    Google Scholar 

  64. Mahmood A, Delmon-Moingeon LI, Limpa-Amara N, Davison A, Jones AG. A new approach to labeling cells with technetium-99m, part 1. Preparation of modified polylysine and in vitro cell labeling. Nucl Med Biol 1996;23:79–85.

    Article  PubMed  CAS  Google Scholar 

  65. Verbeke KA, Vanbilloen HP, De Roo MJ, Verbruggen A. Technetium-99m mercaptoalbumin as a potential substitute for technetium-99m labelled red blood cells. Eur J Nucl Med 1993;20:473–82.

    Article  PubMed  CAS  Google Scholar 

  66. Verbeke KA, Vanhecke WB, Mortelmans LA, Verbruggen AM. First evaluation of technetium-99m dimercaptopropionyl albumin as possible tracer agent for ventriculography in a volunteer. Eur J Nucl Med 1994;21:906–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Verbruggen, A.M. (1996). Bifunctional Chelators for Technetium-99m. In: Mather, S.J. (eds) Current Directions in Radiopharmaceutical Research and Development. Developments in Nuclear Medicine, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1768-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1768-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7289-2

  • Online ISBN: 978-94-009-1768-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics