Skip to main content

Rearrangements of Optically Pure Hydroperoxides

  • Chapter
Free Radicals in Synthesis and Biology

Part of the book series: NATO ASI Series ((ASIC,volume 260))

Abstract

The mechanism of autoxidation of lipid materials has been the focus of much investigation. Hydroperoxides are the primary products formed in lipid autoxidation and these hydroperoxide products undergo free radical rearrangements. For example, the hydroperoxides formed in the autoxidation of linoleate rearrange by a mechanism thought to involve formation of the peroxyl radical from the corresponding hydroperoxide and fragmentation of this peroxyl radical to the delocalized carbon radical. Readdition of oxygen to the delocalized radical leads to mixtures of products. Simple allylic hydroperoxides also rearrange by a mechanism involving formation of a peroxyl radical intermediate. The mechanism of this rearrangement has been shown to be concerted. This was demonstrated by the fact that the rearrangement carried out under 180 labelled oxygen does not lead to products that have incorporated labelled oxygen. Furthermore, rearrangement of optically pure allylic hydroperoxides leads to rearrangement products that are also optically pure. A concerted mechanism is consistent with these results. The optically pure allylic hydroperoxides have not been previously prepared and a major focus of our work has been the development of methods for the synthesis of these compounds. We have succeeded in developing methods for the resolution of allylic and dienylic hydroperoxides. Our method involves conversion of the hydroperoxides to perketal derivatives that are formed from the hydroperoxide and α-methyl vinyl ethers derived from (-)-2-phenyl-cyclohexanol. The diastereomeric perketal derivatives can be separated by chromatographic techniques and the perketal protecting group then removed with mild acid. In this way, seven different optically active hydroperoxides have been resolved. In fact, we have yet to encounter a chriral hydroperoxide that cannot be resolved by this approach. Rearrangement of optically pure allylic hydroperoxides occurs with chirality transfer to the new stereocenter formed in the rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Autor, In: The Biology and Chemistry of Active Oxygen (J. V. Bannister, W. H. Bannister, Eds), pp. 139–145. Elsevier, New York, (1984)

    Google Scholar 

  2. K. U. Ingold, Acc. Chem. Res., 2, 1–9 (1969)

    Article  CAS  Google Scholar 

  3. J. A. Howard, Free radicals (J. K. Kochi, Ed.), pp. 3–62. Wiley, New York, (1973)

    Google Scholar 

  4. G. A. Russell, J. Am. Chem. Soc., 79, 3871–3877 (1957)

    Article  CAS  Google Scholar 

  5. J. A. Howard, K. U. Ingold, and M. Symonds, Can J. Chem., 45, 1017–1022 (1968)

    Article  Google Scholar 

  6. F. Haslbeck, and W. Grosch, J. Food Biochem., 9, 1–3 (1985)

    Article  CAS  Google Scholar 

  7. H. W. S. Chan, V. K. Newby, and G. Levett, J. Chem. Soc., Chem. Commun., 82–83 (1978)

    Google Scholar 

  8. N. A. Porter, B. A. Weber, H. Weenen, and J. A. Khan, J.Am. Chem. Soc., 102, 5597–5601 (1980)

    Article  CAS  Google Scholar 

  9. Yamamoto, S. Haga, E. Niki, and Y. Kamiya, Bull. Chem. Soc., Jpn, 57, 1260–1264 (1984)

    Article  CAS  Google Scholar 

  10. Y. Yamamoto, E. Niki, and Y. Kamiya, Lipids, 17, 870–877 (1982)

    Article  CAS  Google Scholar 

  11. N. A. Porter, Acc. Chem. Res., 19, 262–268 (1986)

    Article  CAS  Google Scholar 

  12. E. Bascetta, F. D. Gunstone, and J. C. Walton, J. Chem. Soc., Perkin Trans. II, 603–613 (1983)

    Google Scholar 

  13. N. A. Porter, L. S. Lehman, B. A. Weber, and K. J. Smith, J.Am. Chem.Soc., 103, 6447–6455 (1981)

    Article  CAS  Google Scholar 

  14. Frankel, E. N, Garwood, R. F., Khambay, B. P. S., Moss, G. P. O., Weedon, B. C. L., J. Chem. Soc. Perkin Trans. I, 2233, (1984)

    Google Scholar 

  15. Schenck, G.D., Neumiller, O. A., Eisfield, W., Angew. Chem. Int. Ed., 70, 595, (1958)

    CAS  Google Scholar 

  16. Brill; W. F., J, Am. Chem. Soc., 87, 3286, (1965)

    Article  CAS  Google Scholar 

  17. Brill, W. F., J. Chem. Soc. Perkin Trans. II, 621,(1984)

    Google Scholar 

  18. Porter, N., Zuraw, P., J. Chem. Soc. Chem. Comm., 1472, (1985)

    Google Scholar 

  19. Korth, H.-G., Heinrich, T., Sustmann, R., J. Am. Chem. Soc., 103, 4483, (1981)

    Article  CAS  Google Scholar 

  20. Barclay, L. R. C., Griller, D., Ingold, K. U., J. Am. Chem. Soc. 104, 4399, (1982)

    Article  CAS  Google Scholar 

  21. Saebo, S., Beckwith, A. L. J., Radom, L., J. Am. Chem. Soc., 106, 5119, (1984)

    Article  CAS  Google Scholar 

  22. Barclay, L. R. C., Lusztyk, J., Ingold, K. U., J. Am. Chem. Soc., 106, 1793, (1984)

    Article  CAS  Google Scholar 

  23. Galliard, T.; Chan, H. W.-S, The Biochemistry of Plants, Lipoxygenases, Galliard, T.; Chan, H. W.-S., Ed. Academic Press, Inc., 1980, pg. 131.

    Google Scholar 

  24. Serhan, C. N.; Hamberg, M.; Samuelsson, B.; Morris, J.; Wishka, D. G., Proc Natl. Acad. Sci.. USA. 83, 1983, (1986])

    Google Scholar 

  25. Adams, J.; Fitzsimmons, B. J.; Girard, Y.; Leblanc, Y.; Evans, J. F.; Rokach, J., J. Am. Chem. Soc., 107, 464, (1985)

    Article  CAS  Google Scholar 

  26. Corey, E. J.; d’Alarcao, M.; Matsuda, S. P. T.; Lansbury, Jr., P. T., J. Am. Chem. Soc. 109, 289, (1987])

    Article  CAS  Google Scholar 

  27. Hamberg, M., Binchimica et Biophysica Acta, 920, 76, (1987)

    CAS  Google Scholar 

  28. Brash, A. R.; Baertschi, S. W.; Ingram, C. D.; Harris, T. M., Journal of Biological Chemistry. 262, 15829, (1987)

    CAS  Google Scholar 

  29. Gardner, H. W.; Kleiman, R.; Christianson, D. D.; Weisleder, D., Lipids, 10, 602, (1975)

    Article  CAS  Google Scholar 

  30. Koshino, H.; Togiya, S.; Yoshihara, T.; Sakamura, S.; Shimanuki, T.; Sato, T.; Tajimi, A., Tetrahedron Lett, 28, 73, (1987)

    Article  CAS  Google Scholar 

  31. See also Phillips, N. J.; Lynn, D. G.; Lynn, W. S., Ninth Cotton Dust Research Conference Proceedings, National Cotton Dust Council, Memphis, TN, 91 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Porter, N.A., Dussault, P.H. (1989). Rearrangements of Optically Pure Hydroperoxides. In: Minisci, F. (eds) Free Radicals in Synthesis and Biology. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0897-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0897-0_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6892-5

  • Online ISBN: 978-94-009-0897-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics