Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 314))

Abstract

The mechanistic aspects of the C-X bond forming reactions resulting from CO2 insertion into M-X bonds, where X = H, R, OR, and NR2, must be elaborated if we are to be successful in developing catalysts for processes leading to useful chemicals derived from carbon dioxide. Of the three reactions involving the coupling of CO2 with coordinated ligands (M-H, M-R, M-OR) which are of primary interest in our research, only the C-C bond formation process is generally irreversible.

Our present understanding of the mechanism of the carbon-carbon bond forming process is the most detailed. Since carbon dioxide insertion into anionic metal-hydrides and metal-alkoxides is often a rapid process, limited mechanistic information for these processes is available. In contrast, the reverse process, decarboxylation, generally occurs on a timescale which is amenable to kinetic analysis by isotopic labelling experiments such as depicted in the equation below.

$$ M - OC(O)H + *C{{O}_{2}} \to M - O*C(O)H + C{{O}_{2}} $$

The mechanistic view emerging from these studies is that the decarboxylation reaction is strongly dependent on the nature of the X group in the [MOC(O)X] moiety. That is, the X group must have an appropriate orbital for interaction with the metal center during the decarboxylation process. This in turn requires significant interaction between CO2 and X group during the C-X bond forming reaction. A detailed analysis of the carboxylation/decarboxylation pathways will be presented. These insertion reactions can play pivotal roles in the mechanisms of the syntheses of organic products from carbon dioxide. Such processes include the production of alkyl formates, carboxylic acids, lactones, alkylpolycarbonates, etc.

Finally, the utilization of organometallic chemistry to develop better heterogeneous metal catalysts for the production of chemical feedstocks from CO2, e.g. CH4 and CH3OH, will be discussed. One of the essential problems to be dealt with in heterogeneous catalysts is the preparation and stabilization of very small metal particles supported on oxide carriers. In this regard metal carbonyl clusters in and on solid metal supports such as silica, alumina, and magnesia, serve as good sources of highly dispersed, low-valent metals for catalysis. Our efforts in the area of CO2 methanation employing ruthenium carbonyl clusters on alumina and in zeolite supercages will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behr, A. Angew. Chem. Int. Engl. Ed. 1989, 27, 661.

    Article  Google Scholar 

  2. Behr, A. in “Carbon Dioxide Activation by Metal Complexes”: VCH Verlagsgesellschaft mbH, D-6940 Weinheim (FRG), 1988.

    Google Scholar 

  3. Braunstein, P.; Matt, D.; Nobel, D. Chem, Rev. 1988, 88, 747.

    Article  CAS  Google Scholar 

  4. Darensbourg, D. J.; Bauch, C. G.; Ovalles, C., “Catalytic Activation of Carbon Dioxide”, ACS Symposium Series 363, 26, 1988.

    Article  CAS  Google Scholar 

  5. Walther, D. Coord. Chem. Rev. 1987, 79, 135.

    CAS  Google Scholar 

  6. Carbon Dioxide as a Source of Carbon; Aresta, M., Forti, G., Ed.; Reidel: Dordrecht, 1987; Vol. 206.

    Google Scholar 

  7. Behr, A. in “Catalysis in C1 Chemistry”; Keim, W., Ed.; Reidel: Dordrecht, 1983.

    Google Scholar 

  8. Palmer, D. A.; van Eldik, R Chem. Rev. 1983, 83, 651.

    Article  CAS  Google Scholar 

  9. Darensbourg, D. J.; Kudaroski, R Adv. Organomet. Chem. 1983, 22, 129.

    Article  CAS  Google Scholar 

  10. Ito, T.; Yamamoto, A. “Organic and Bio-organic Chemistry of Carbon Dioxide”; Inoue, S.; Yamazaki, N.; Eds.; Kodansha, Ltd.; Toyoko, Japan, 1982, p. 79.

    Google Scholar 

  11. Sneeden, R P. A. “Comprehensive Organometallic Chemistry”; Wilkinson. G.; Stone, F. G. A.; Abel, E.W.; Eds.; Pergamon Press: Oxford, 1982; Vol. 8, p. 225.

    Chapter  Google Scholar 

  12. Eisenberg, R; Hendriksen, D. E. Adv. Catal. 1979, 28, 79.

    Article  CAS  Google Scholar 

  13. Kolomnikov, I. S.; Grigoryan, M. Kh. Russ. Chem. Rev. 1978, 47, 334.

    Article  Google Scholar 

  14. a) Darensbourg, D. J.; Rokicki, A.; Darensbourg, M. Y. J. Am. Chem. Soc, 1981, 103 3223.

    Article  CAS  Google Scholar 

  15. Darensbourg, D. J.; Rokicki, A. Organometallics 1982, 1, 1685.

    Article  CAS  Google Scholar 

  16. Slater, S. G.; Lusk, R; Schumann, B. F.; Darensbourg, M. Y. Organometallics 1982, 1, 1662.

    Article  CAS  Google Scholar 

  17. a) Volpin, M. E.; Kolomnikov, I. S. Organomet. React. 1975, 5, 313; Pure Appl. Chem. 1973, 33 567

    Google Scholar 

  18. Kolomnikov, I. S.; Stepovska, G.; Tyrlik, A.; Volpin, M. E. Zh. Obshch. Khim. 1972, 42, 1652

    CAS  Google Scholar 

  19. J Gen. Chem. USSR (Engl. Transl.) 1972, 42, 1645.

    Google Scholar 

  20. Sakaki, S.; Ohkubo, K. Inorg. Chem. 1989, 28, 2583.

    Google Scholar 

  21. Ford, P. C.; Rokicki, A. Adv. Organomet. Chem. 1988, 28, 139.

    Article  CAS  Google Scholar 

  22. Darensbourg, D. J.; Baldwin, B. J.; Froelich, J. A. J. Am. Chem. Soc. 1980 102 4688 and references therein.

    Google Scholar 

  23. Sullivan, B. P.; Bruce, M. R M.; Otoole, T. R; Bolinger, C. M.; Megehee, E.; Thorp, H.; Meyer, T. J. ACS Symposium Series. 363, 26, 1988.

    Article  Google Scholar 

  24. Merrifield, J. H.; Gladysz, J. A. Organometallics 1983, 2, 782.

    Article  CAS  Google Scholar 

  25. Wiegreffe, P. W. Ph.D. Dissertation, 1988, Texas A&M University, College Station, 63

    Google Scholar 

  26. Bo. C.; Dedieu, A Inorg. Chem. 1989, 22, 304.

    Article  Google Scholar 

  27. Darensbourg, D. J.; Darensbourg, M. Y.; Goh, L. Y.; Ludvig, M.; Wiegreffe, P. J. Am. Chem. Soc. 1987, 109, 7539.

    Article  CAS  Google Scholar 

  28. Kudo, K.; Hidai, M.; Uchida, Y. J. Organomet. Chem. 1973, 56 413.

    Article  CAS  Google Scholar 

  29. Paonessa, R S.; Trogler, W. C. J. Am. Chem. Soc. 1982, 104 3529.

    Article  CAS  Google Scholar 

  30. a) Darensbourg, D. J.; Rokicki, A. J. Am. Chem Soc. 1982, 104 349.

    Article  CAS  Google Scholar 

  31. Darensbourg, D. J.; Kudaroski, R J. Am. Chem. Soc. 1984, 106, 3672.

    Article  CAS  Google Scholar 

  32. Darensbourg, D. J.; Kudaroski, R; Bauch, C. G.; Pala, M.; Simmons, D.; White, J. N. J. Am. Chem. Soc. 1985, 107, 7463.

    Article  CAS  Google Scholar 

  33. Darensbourg, D. J.; Grotsch, G. J. Am. Chem. Soc. 1985, 107, 7474.

    Google Scholar 

  34. Darensbourg, D. J.; Bauch, C. G.; Rheingold, A L. Inorg. Chem. 1987, 26, 977.

    Article  CAS  Google Scholar 

  35. Darensbourg, D. J.; Pala, M. J. Am. Chem. Soc. 1985, 107, 5687.

    Article  CAS  Google Scholar 

  36. Kaufman, E.; Sieber, S.; Schleyer, P. v. R J. Am. Chem. Soc, 1989, 111 4005.

    Article  Google Scholar 

  37. Darensbourg, D. J.; Sanchez, K. M.; Rheingold, A. L. J. Am. Chem. Soc. 1987 109, 290.

    Article  CAS  Google Scholar 

  38. Darensbourg, D. J.; Sanchez, K. M.; Reibenspies, J. H. Inorg. Chem, 1988, 27, 821.

    Article  CAS  Google Scholar 

  39. Darensbourg, D. J.; Sanchez, K. M.; Reibenspies, J. H.; Reibenspies, A L. J. Am. Chem. Soc. 1989, 111 0000.

    Google Scholar 

  40. Tooley, P. A.; Ovalles, Ç.; Kao, S. C.; Darensbourg, D. J.; Darensbourg, M. Y. J. Am. Chem. Soc. 1986, 108, 5465.

    Article  CAS  Google Scholar 

  41. McNeese, T. J.; Cohen, M. B.; FoJanan, B. M. Organometallics 1984, 3, 552.

    Article  CAS  Google Scholar 

  42. McNeese, T. J.; Mueller, T. E.; Wierda, D. A.; Darensbourg, D. J.; Delord, T. J. Inorg. Chem. 1985, 24, 3465.

    Article  CAS  Google Scholar 

  43. Behr, A.; Herdtweck, E.; Herrmann, W. A.; Keim, W.; Kipshagen, W. J. Chem. Soc. Chem. Commun. 1986, 1262.

    Google Scholar 

  44. Tolman, C. A Chem. Rev,. 1977, 77. 313.

    Article  CAS  Google Scholar 

  45. Darensbourg, D. J.; Mueller, B. manuscript to be submitted for publication.

    Google Scholar 

  46. Chetcuti, M. J.; Chisholm, M. H.; Foiling, K.; Haitko, D. A.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104 21–38.

    Google Scholar 

  47. Cowan, R L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111 4750.

    Article  CAS  Google Scholar 

  48. Darensborg, D. J.; Ovalles, C. J. Am. Chem. Soc. 1984, 106 3750.

    Article  Google Scholar 

  49. Darensbourg, D. J.; Ovalles, C. J, Am. Chem. Soc. 1987, 109 330.

    Google Scholar 

  50. Darensbourg, D. J.; Gray, R L.; Ovalles, C.; Pala, M. J. Mol. Catal. 1985, 29 285.

    Article  CAS  Google Scholar 

  51. Darensbourg, D. J.; Gray, R L.; OvaIles, C. J. Mol. Catal. 1987, 41, 329.

    Article  CAS  Google Scholar 

  52. Darensbourg, D. J.; Gibson, G., in: “Experimental Organometallic Chemistry”, A. L. Wayda and M Y Darensbourg, Eds., American Chemical Society, Washington, D. C. (1987).

    Google Scholar 

  53. Shilov, A. E. “Activation of Saturated Hydrocarbons by Transition Metal Complexes”, D. Reidel, Dordrecht, 1984.

    Google Scholar 

  54. Crabtree, R H. Chem. Rev. 1985, 85, 245.

    Article  CAS  Google Scholar 

  55. Wenzel, T. T.; Bergman, R. G. J. Am. Chem. Soc., 1986, 108, 4856.

    Article  CAS  Google Scholar 

  56. Janowicz, A. H.; Periana, R A.; Buchanan, J. M.; Kovac, C. A.; Stryker, J. M.; Wax

    Google Scholar 

  57. Behr, A.; Herdtweck, E.; Herrmann, W. A.; Keim, W.; Kipshagen, Organometallics 1987, 6, 2307.

    Google Scholar 

  58. Inoue, S. Chemtech 1976, 6, 588.

    CAS  Google Scholar 

  59. Darensbourg, D. J.; Ovalles, C.; Bauch, C. G. Rev. Inorg. Chem. 1985, 7, 315.

    Article  CAS  Google Scholar 

  60. Darensbourg, D. J.; Ovalles, C. Inorg, Chem. 1986, 25, 1603.

    Article  CAS  Google Scholar 

  61. Kuznetsov, V. L; Bell, A. T. J. Catal. 1980, 68, 374.

    Article  Google Scholar 

  62. Darensbourg, D. J.; Mangold, D. J. unpublished observations.

    Google Scholar 

  63. Goodwin, J. G.; Naccache, C. J. Mol. Catal. 1982, 14, 259.

    Article  CAS  Google Scholar 

  64. Bein, T.; Jacobs, P. A. J. Chem, Soc., Faraday Trans. 1983, 79, 1819.

    Article  CAS  Google Scholar 

  65. Herron, N.; Stucky, G. D.; Tolman, C. A. Inorg, Chim. Acta 1985, 100 135.

    Article  CAS  Google Scholar 

  66. Darensbourg, D. J.; Gibson, G. unpublished results.

    Google Scholar 

  67. Verdonck, J. J.; Jacobs, P. A.; Genet, M.; Poncelet, G. J. Chem. Soc.. Faraday I, 1980, 76, 403.

    Article  CAS  Google Scholar 

  68. Pederson, L. A.; Lunsford, J. H. J. Catal. 1980, 61, 39.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Darensbourg, D.J. (1990). The Organometallic Chemistry of Carbon Dioxide Pertinent to Catalysis. In: Aresta, M., Schloss, J.V. (eds) Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization. NATO ASI Series, vol 314. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0663-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0663-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6783-6

  • Online ISBN: 978-94-009-0663-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics