Skip to main content

Numerical Modeling of the Ring Current and Plasmasphere

  • Conference paper

Part of the book series: Space Science Series of ISSI ((SSSI,volume 2))

Abstract

Over the last 25 years, considerable scientific effort has been expended in the development of quantitative models of the dynamics of Earth’s inner magnetosphere, particularly on studies of the injection of the storm-time ring current and of dynamic variations in the shape and size of the plasmasphere. Nearly all modeling studies of ring-current injection agree that time-varying magnetospheric convection can produce approximately the ion fluxes that are observed in the storm-time ring current, but the truth of that assumption has never been demonstrated conclusively. It is not clear that the actual variations of convection electric fields are strong enough to explain the observed flux increases in ~100 keV ions at the peak of the storm-time ring current. Observational comparisons are generally far from tight, primarily due to the paucity of ring-current measurements and to basic limitations of single-point observations. Also, most of the theoretical models combine state-of-the-art treatment of some aspects of the problem with highly simplified treatment of other aspects. Even the most sophisticated treatments of the sub-problems include substantial uncertainties, including the following: (i) There is still considerable theoretical and observational uncertainty about the dynamics of the large-scale electric fields in the inner magnetosphere; (ii) No one has ever calculated a force-balanced, time-dependent magnetic-field model consistent with injection of the storm-time ring current; (iii) The most obvious check on the overall realism of a ring-current injection model would be to compare its predicted Dst index against observations; however, theoretical calculations of that index usually employ the Dessler-Parker-Sckopke relation, which was derived from the assumption of a dipole magnetic field and cannot be applied reliably to conditions where the plasma pressure significantly distorts the field; (iv) Although loss rates by charge exchange and Coulomb scattering can be calculated with reasonable accuracy, it remains unclear whether wave-induced ion precipitation plays an important role in the decay of the ring current. However, considerable progress could be made in the next few years. Spacecraft that can provide images of large regions of the inner magnetosphere should eliminate much of the present ambiguity associated with single-point measurements. On the theoretical side, it will soon be possible to construct models that, for the first time, will solve a complete set of large-scale equations for the entire inner magnetosphere. The biggest uncertainty in the calculation of the size and shape of the plasmasphere lies in the dynamics and structure of the electric field. It is still not clear how important a role interchange instability plays in determining the shape of the plasmapause or in creating density fine structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IMF:

Interplanetary Magnetic Field

MSFM:

Magnetospheric Specification and Forecast Model

RE :

Earth radius

References

  • André, M., and Yau, A.: 1997, ‘Theory and observations of ion energization and outflow in the high- latitude ionosphere’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Bishop, J.: 1996, ‘Multiple charge exchange and ionization collisions within the ring current- geocorona-plasmasphere system: Generation of a secondary ring current on inner L shells’, J. Geophys. Res. 101, 17,325.

    Google Scholar 

  • Blanc, M., and Richmond, A.D.: 1980, ‘The ionospheric disturbance dynamo’, J. Geophys. Res. 85, 1669.

    Article  ADS  Google Scholar 

  • Boyle, C.B., Reiff, P.H., and Hairston, M.R., ‘Empirical polar cap potentials’, J. Geophys. Res. 102, 111.

    Google Scholar 

  • Campbell, W.H.: 1996, ‘Geomagnetic storms, the Dst ring-current myth and lognormal distributions’, J. Atmos. Terr. Phys. 58, 1171.

    Article  ADS  Google Scholar 

  • Carpenter, D.L., and Lemaire, J.: 1997, ‘The plasmapause, from discovery to present’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Chen, A.J., and Wolf, R.A.: 1972, ‘Effects on the plasmasphere of a time-varying convection electric field’, Planet. Space Sci. 20, 483.

    Article  ADS  Google Scholar 

  • Chen, M.W., Lyons, L.R., and Schulz, M.: 1994, ‘Simulations of phase space distributions of storm time proton ring current’, J. Geophys. Res. 99, 5745.

    Article  ADS  Google Scholar 

  • Chen, M.W., Schulz, M., and Lyons, L.R.: 1996, ‘Modeling of ring current formation and decay: A review’, in B.T. Tsurutani, J.K. Arballo, W.D. Gonzalez, and Y.Kamide (eds.), Am. Geophys. Un., Washington, D. C., Magnetic Storms, Am. Geophys. Un., Washington, D. C., pp. 173–186.

    Google Scholar 

  • Cheng, C.Z.: 1995, ‘Three-dimensional magnetospheric equilibrium with isotropic pressure’, Geophys. Res. Lett. 22, 2401.

    Article  ADS  Google Scholar 

  • Daglis, I.: 1997, ‘The role of magnetosphere-ionosphere coupling in magnetic storm dynamics’, in B.T. Tsurutani, W.D. Gonzalez, Y. Kamide and J.K. Arballa (eds.), Magnetic Storms, Am. Geophys. Un., Washington, D. C., pp. 107–116.

    Chapter  Google Scholar 

  • Dessler, A.J., and Parker, E.N.: 1959, ‘Hydromagnetic theory of geomagnetic storms’, J. Geophys. Res. 64, 2239.

    Article  ADS  Google Scholar 

  • Fejer, B.G.: 1986, ‘Equatorial ionospheric electric fields associated with magnetospheric disturbances’, in Y. Kamide and J.A. Slavin (eds.), Solar Wind-Magnetosphere Coupling, Terra Sci. Publ. Co., Tokyo, pp. 519–545.

    Google Scholar 

  • Fejer, B.G., and Scherliess, L.: 1995, ‘Time-dependent response of equatorial ionospheric electric fields to magnetospheric disturbances’, Geophys. Res. Lett. 22, 851.

    Article  ADS  Google Scholar 

  • Fok, M.-C., Kozyra, J.U., Nagy, A.F., and Cravens, T.E.: 1991, ‘Lifetime of ring current particles due to Coulomb collisions in the plasmasphere’, J. Geophys. Res. 96, 7861.

    Article  ADS  Google Scholar 

  • Fok, M.-C., Moore, T.E., and Greenspan, M.E.: 1996, ‘Ring current development during storm main phase’, J. Geophys. Res. 101, 15,311.

    Google Scholar 

  • Forbes, J.M., and Harel, M.: 1989, ‘Magnetosphere-thermosphere coupling: An experiment in interactive modeling’, J. Geophys. Res. 94, 2631.

    Article  ADS  Google Scholar 

  • Grebowsky, J.M.: 1970, ‘Model study of plasmapause motion’, J. Geophys. Res. 75, 4329.

    Article  ADS  Google Scholar 

  • Grebowsky, J.M., Tulanay, Y.K., and Chen, A.J.: 1974, ‘Temporal variations in the dawn and dusk midlatitude trough and plasmapause position’, Planet. Space Sci. 22,1089.

    Article  ADS  Google Scholar 

  • Gussenhoven, M.S., Hardy, D.A., and Heinemann, N.: 1983, ‘Systematics of the equatorward diffuse auroral boundary’, J. Geophys. Res. 88, 5692.

    Article  ADS  Google Scholar 

  • Hilmer, R.V., and Voigt, G.-H.: 1995, ‘A magnetospheric magnetic field model with flexible current systems driven by independent physical parameters’, J. Geophys. Res. 100, 5613.

    Article  ADS  Google Scholar 

  • Horwitz, J.L., and Moore, T.E.: 1997, ‘Four general questions on the transport of ionospheric plasmas into the magnetosphere’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Huang, C.Y., and Frank, L.A.: 1986, ‘A statistical study of the central plasma sheet: Implications for substorm models’, Geophys. Res. Lett. 13, 652.

    Article  ADS  Google Scholar 

  • Huang, T.S., Wolf, R.A., and Hill, T.W.: 1990, ‘Interchange instability of the Earth’s plasmapause’, J. Geophys. Res. 95, 17,187.

    Google Scholar 

  • Hudson, M.K., Kotelnikov, A.D., Li, X., Roth, I., Temerin, M., Wygant, J., Blake, J.B., and Gussenhoven, M.S.: 1995, ‘Simulation of proton radiation belt formation during the March 24, 1991, SSC’, Geophys. Res. Lett. 22, 291.

    Article  ADS  Google Scholar 

  • Iyemori, T., and Rao, D.R.K.: 1996, ‘Decay of the Dst field of geomagnetic disturbance after sub- storm onset and its implication to storm-substorm relation’, Ann. Geophys. 14, 608.

    Article  ADS  Google Scholar 

  • Jordanova, V.K., Kistler, L.M., Kozyra, J.U., Khazanov, G.V., and Nagy, A.F.: 1996, ‘Collisional losses of ring current ions’, J. Geophys. Res. 101, 111.

    Article  ADS  Google Scholar 

  • Kelley, M.C., Fejer, B.G., and Gonzales, C.A.: 1979, ‘An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field’, Geophys. Res. Lett. 6, 301.

    Article  ADS  Google Scholar 

  • Koskinen, H.E.J.: 1997, ‘On observations of magnetospheric waves and their relation to precipitation’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Kozyra, J.U., Jordanova, V.K., Home, R.B., and Thorne, R.M.: 1994, ‘Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss, 1, Diffusion coefficients and timescales’, J. Geophys. Res. 99,4069.

    Article  ADS  Google Scholar 

  • Kozyra, J.U., Rasmussen, C.E., Miller, R.H., and Lyons, L.R.: 1997, ‘Modeling of the contribution of electromagnetic ion cyclotron waves to stormtime ring current erosion’, in B.T. Tsurutani, W. D. Gonzales, Y. Kamide and J.K. Arballo, Magnetic Storms, Am. Geophys. Un., Washington, D.C., pp. 187–202.

    Chapter  Google Scholar 

  • Lambour, R.L.: 1994, Calibration of the Rice Magnetospheric Specification and Forecast Model for the Inner Magnetosphere, Ph. D. thesis, Rice University, Houston, Texas.

    Google Scholar 

  • Lemaire, J.: 1975, ‘The mechanisms of formation of the plasmapause’, Ann. Geophys. 31, pp. 175.

    Google Scholar 

  • Lemaire, J.: 1976, ‘Steady state plasmapause positions deduced from Mcllwain’s electric field models’, J. Atm. Terr. Phys. 38, pp. 1041.

    Article  ADS  Google Scholar 

  • Li, X., Chan, A., Hudson, M., and Roth, I.: 1991, ‘Ring current ion interaction with micropulsations’, in J.R. Kan, T.A. Potemra, S. Kokubun, and T. Iijima (eds.), Magnetospheric Substorms, Am. Geophys. Un., Washington, D. C., pp. 469–476.

    Chapter  Google Scholar 

  • Li, X., Hudson, M., Chan, A., and Roth, I.: 1993, ‘Loss of ring current 0 + ions due to interaction with Pc 5 waves’, J. Geophys. Res. 98, 215.

    Article  ADS  Google Scholar 

  • Li, X., Roth, I., Temerin, M., Wygant, J.R., Hudson, M.K., and Blake, J.B.: 1993, ‘Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC’, Geophys. Res. Lett. 20, 2423.

    Article  ADS  Google Scholar 

  • Lui, A.T.Y., McEntire, R.W., and Krimigis, S.M.: 1987, ‘Evolution of the ring current during two geomagnetic storms’, J. Geophys. Res. 92, 7459.

    Article  ADS  Google Scholar 

  • Lyons, L.: 1997, ‘Magnetospheric processes leading to precipitation’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Moffett, R.J., Bailey, G.J., Quegan, S., Rippeth, Y., Samson, A.M., and Sellek, R.: 1989, ‘Modelling the ionospheric and plasmaspheric plasma’, Phil. Trans. R. Soc. Lond. A328, 255.

    Article  ADS  Google Scholar 

  • Moldwin, M.B., Thomsen, M.F., Bame, S.J., McComas, D., and Reeves, G.D.: 1995, ‘The fine-scale structure of the outer plasmasphere’, J. Geophys. Res. 100, 8021.

    Article  ADS  Google Scholar 

  • Onsager, T.G., and Lockwood, M.: 1997, ‘Magnetospheric sources of precipitation regions in the ionosphere’, Space Sci. Rev. (this volume).

    Google Scholar 

  • Rasmussen, C.E., and Schunk, R.W.: 1990, ‘A three-dimensional time-dependent model of the plasmasphere’, J. Geophys. Res. 95, 6133.

    Article  ADS  Google Scholar 

  • Rasmussen, C.E., Guiter, S.M., and Thomas, S.G.: 1993, ‘A two-dimensional model of the plasmasphere: refilling time constants’, Planet. Space Sci. 41, 35.

    Article  ADS  Google Scholar 

  • Richmond, A.D.: 1973: ‘Self-induced motions of thermal plasma in the magnetosphere and stability of the plasmapause’, Rad. Sci. 8, 1019.

    Article  ADS  Google Scholar 

  • Richmond, A.D.: 1983, ‘Thermospheric dynamics and electrodynamics’, in R.L. Carovillano and J.M. Forbes (eds.), Solar-Terrestrial Physics: Principles and Theoretical Foundations, D. Reidel, Dordrecht-Holland, pp. 523–607.

    Google Scholar 

  • Schield, M.A., Freeman, J.W., and Dessler, A.J.: 1969, ‘A source for field-aligned currents at auroral latitudes’, J. Geophys. Res. 74, 247.

    Article  ADS  Google Scholar 

  • Sckopke, N.: 1966, ‘A general relation between the energy of trapped particles and the disturbance field near the Earth’, J. Geophys. Res. 71, 3125.

    Google Scholar 

  • Sheldon, R.B., and Hamilton, D.C.: 1993, ‘Ion transport and loss in the Earth’s quiet ring current, 1. Data and standard model’, J. Geophys. Res. 98, 13,491.

    Google Scholar 

  • Siscoe, G.L., and Petschek, H.E.: 1996, ‘On storm weakening during substorm expansion phase’, Ann. Geophys. 15, 211.

    Article  ADS  Google Scholar 

  • Spiro, R.W., Wolf, R.A., and Fejer, B.G.: 1988, ‘Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984’, Ann. Geophys. 6, 39.

    ADS  Google Scholar 

  • Thorne, R.M.: 1972, ‘Stormtime instabilities of the ring current’, in K. Folkestad (ed.), Magnetosphere Ionosphere Interactions, University Press, Oslo, pp. 185–202.

    Google Scholar 

  • Toffoletto, F.R., Spiro, R.W., Wolf, R.A., Hesse, M., and Birn, J.: 1996, ‘Self-consistent modeling of inner magnetospheric convection’, in E.J. Rolfe and B. Kaldeich (eds.), Proceedings of the ICS-3 Substorm Meeting, SP-389, ESA Publications Division, ESTEC, Noordwijk, The Netherlands, pp. 223–230.

    Google Scholar 

  • Tsyganenko, N.A.: 1989, ‘A magnetospheric magnetic field model with a warped tail current sheet’, Planet. Space Sci. 37, 5.

    Article  ADS  Google Scholar 

  • Tsyganenko, N.A.: 1995, ‘Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause’, J. Geophys. Res. 100, 5599.

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M.: 1970, ‘Mathematical models of magnetospheric convection and its coupling to the ionosphere’, in B. M. McCormac (ed.) Particles and Fields in the Magnetosphere, D. Reidel, Hingham, MA, pp. 60–71.

    Google Scholar 

  • Vasyliunas, V.M.: 1972, ‘The interrelationship of magnetospheric processes’, in B.M. McCormac (ed.), The Earth’s Magnetospheric Processes, D. Reidel, Dordrecht, Holland, pp. 29–38.

    Google Scholar 

  • Volland, H.: 1978, ‘A model of the magnetospheric electric convection field’, J. Geophys. Res. 83, 2695.

    Article  ADS  Google Scholar 

  • Weiss, L.A., Lambour, R.L., Elphic, R.E., and Thomsen, M.F.: 1997, ‘Study of plasmaspheric evolution using geosynchronous observations and global modeling’, Geophys. Res. Lett. 24, 599.

    Article  ADS  Google Scholar 

  • Wolf, R.A.: 1995, ‘Magnetospheric configuration’, in M.G. Kivelson and C.T. Russell (eds.), Introduction to Space Physics, Cambridge University Press, Cambridge, England, pp. 288–329.

    Google Scholar 

  • Wolf, R.A.: 1983, ‘The quasi-static (slow-flow) region of the magnetosphere’, in R.L. Carovillano and J.M. Forbes (eds.), Solar-Terrestrial Physics: Principles and Theoretical Foundations, D. Reidel, Hingham, MA, pp. 303–368.

    Google Scholar 

  • Wolf, R.A., Freeman, J.W., Jr., Hausman, B.A., Spiro, R.W., Hilmer, R.V., and Lambour, R.L.: 1997, ‘Modeling convection effects in magnetic storms’, in B.T. Tsurutani, J.K. Arballo, W.D. Gonzalez, and Y. Kamide (eds.), Magnetic Storms, Am. Geophys. Un., Washington, D. C., pp. 161–172.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this paper

Cite this paper

Wolf, R.A., Spiro, R.W. (1997). Numerical Modeling of the Ring Current and Plasmasphere. In: Hultqvist, B., Øieroset, M. (eds) Transport Across the Boundaries of the Magnetosphere. Space Science Series of ISSI, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0045-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0045-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6509-2

  • Online ISBN: 978-94-009-0045-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics