Skip to main content

Water Sorption Thermodynamics in Polymer Matrices

  • Chapter
  • First Online:

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 208))

Abstract

Water sorption is a key issue in assessing the durability of polymer matrix composites. In fact absorbed water can adversely affect mechanical properties of the matrix and fibre-matrix interface integrity. In this contribution the general issue of water sorption thermodynamics in polymers is addressed from the experimental and theoretical point of view. The case of both rubbery and glassy polymers is considered modelling thermodynamics of water-polymer systems using lattice fluid theories accounting also for the occurrence of possible self- and cross-hydrogen bonding interactions. Outcomes of theoretical analyses are compared to experimental results obtained by vibrational spectroscopy and gravimetric measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mensitieri G, Iannone M (2998) Modelling accelerated ageing in polymer composites. In: Martin R (ed) Ageing of composites. 1st edn. Woodhead Publishing Ltd, Cambridge (England), CRC Press, Boca Raton FL

    Google Scholar 

  2. Bond DA, Smith PA (2006) Modeling the transport of low-molecular-weight penetrants within polymer matrix composites. Appl Mech Rev 59:249–268

    Article  Google Scholar 

  3. Flory PJ, Orwell A, Vrij RA (1964) Statistical thermodynamics of chain molecule liquids. J Am Chem Soc 86:3507–3514

    Article  Google Scholar 

  4. Sanchez IC, Lacombe RH (1976) An elementary molecular theory of classical fluids. Pure fluids. J Phys Chem 80:2352–2362

    Article  Google Scholar 

  5. Sanchez IC, Lacombe RH (1976) Statistical thermodynamics of fluid mixtures. J Phys Chem 80:2568–2580

    Article  Google Scholar 

  6. Sanchez IC, Lacombe RH (1978) Statistical thermodynamics of polymer solution. Macromolecules 11:1145–1156

    Article  Google Scholar 

  7. Simha R, Somcynsky T (1969) On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2:342–350

    Article  Google Scholar 

  8. Panayiotou C, Sanchez IC (1991) Hydrogen bonding in fluids: an equation-of-state approach. J Phys Chem 95:10090–10097

    Article  Google Scholar 

  9. Panayiotou C, Pantoula M, Stefanis E, Tsivintzelis I, Economou IG (2004) Nonrandom hydrogen-bonding model of fluids and their mixtures. 1. Pure fluids. Ind Eng Chem Res 43:6592–6606

    Article  Google Scholar 

  10. Panayiotou C, Tsivintzelis I, Economou IG (2007) Nonrandom hydrogen-bonding model of fluids and their mixtures. 2. Multicomponent mixtures. Ind Eng Chem Res 46:2628–2636

    Article  Google Scholar 

  11. Panayiotou CG (2009) Hydrogen bonding and nonrandomness in solution thermodynamics. In: Birdi KS (ed) Handbook of surface and colloid chemistry, 3rd edn. CRC Press, Taylor and Francis group, New York

    Google Scholar 

  12. Prausnitz JM, Lichrenthaler RN, Gomes de Azevedo E (1998) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall PTR, New Jersey

    Google Scholar 

  13. Taimoori M, Panayiotou C (2001) The non-random distribution of free volume in fluids: non-polar systems. Fluid Phase Equilib 192:155–169

    Article  Google Scholar 

  14. Veytsman BA (1990) Are lattice models valid for fluids with hydrogen bonds? J Phys Chem 94:8499–8500

    Article  Google Scholar 

  15. Veytsman BA (1998) Equation of state for hydrogen-bonded systems. J Phys Chem B 102:7515–7517

    Article  Google Scholar 

  16. Bonavoglia B, Storti G, Morbidelli M (2006) Modeling of the sorption and swelling behavior of semicrystalline polymers in supercritical CO2. Ind Eng Chem Res 45:1183–1200

    Article  Google Scholar 

  17. Scherillo G, Sanguigno L, Galizia M, Lavorgna M, Musto P, Mensitieri G (2012) Non-equilibrium compressible lattice theories accounting for hydrogen bonding interactions: modelling water sorption thermodynamics in fluorinated polyimides. Fluid Phase Equilib 334:166–188

    Article  Google Scholar 

  18. Barrer RM, Barrie JA, Slater J (1958) Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber. J Polym Sci 27:177–197

    Article  Google Scholar 

  19. Michaels AS, Vieth WR, Barrie JA (1963) Solution of gases in polyethylene terephthalate. J Appl Phys 34:1–12

    Article  Google Scholar 

  20. Mensitieri G, Del Nobile MA, Apicella A, Nicolais L (1995) Moisture-matrix interactions in polymer based composite materials. Revue de l’Institut Français du Pétrole 50:551–571

    Google Scholar 

  21. Doghieri F, Sarti GC (1996) Nonequilibrium lattice fluids: a predictive model for the solubility in glassy polymers. Macromolecules 29:7885–7896

    Article  Google Scholar 

  22. Sarti GC, Doghieri F (1998) Predictions of the solubility of gases in glassy polymers based on the NELF model. Chem Eng Sci 19:3435–3447

    Article  Google Scholar 

  23. Scherillo G, Galizia M, Musto P, Mensitieri G (2012) Water sorption thermodynamics in glassy and rubbery polymers: modeling the interactional issues emerging from FTIR spectroscopy. Ind Eng Chem Res. doi:10.1021/ie302350w

    Google Scholar 

  24. Giacinti Baschetti M, Doghieri F, Sarti GC (2001) Solubility in glassy polymers: correlations through the nonequilibrium lattice fluid model. Ind Eng Chem Res 40:3027–3037

    Article  Google Scholar 

  25. Gibbs JH, Di Marzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383

    Article  Google Scholar 

  26. Gibbs JH (1956) Nature of the glass transition in polymers. J Chem Phys 25:185–186

    Article  Google Scholar 

  27. Gibbs JH, Di Marzio EA (1958) Chain stiffness and the lattice theory of polymer phases. J Chem Phys 28:807–813

    Article  Google Scholar 

  28. Chow TS (1980) Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules 13:362–364

    Article  Google Scholar 

  29. Gordon JM, Rouse GB, Gibbs JH, Risen WM (1977) The composition dependence of glass transition properties. J Chem Phys 66:4971–4976

    Article  Google Scholar 

  30. Ellis TS, Karasz FE (1984) Interaction of epoxy resins with water: the depression of glass transition temperature. Polymer 25:664–669

    Article  Google Scholar 

  31. Ellis TS, Karasz FE, ten Brinke G (1983) The influence of thermal properties on the glass transition temperature in styrene/divinylbenzene network-diluent systems. J Appl Polym Sci 28:23–32

    Article  Google Scholar 

  32. ten Brinke G, Karasz FE, Ellis TS (1983) Depression of glass transition temperatures of polymer networks by diluents. Macromolecules 16:244–249

    Article  Google Scholar 

  33. Panayiotou C, Pantoula M (2006) Sorption and swelling in glassy polymer/carbon dioxide systems: Part I. Sorption. J Supercr Fluids 37:254–262

    Article  Google Scholar 

  34. Tsivintzelis I, Angelopoulou AG, Panayiotou C (2007) Foaming of polymers with supercritical CO2: an experimental and theoretical study. Polymer 48:5928–5939

    Article  Google Scholar 

  35. Mensitieri G, Scherillo G (2012) Environmental resistance of high performance polymeric matrices and composites. In: Nicolais L, Borzacchiello A (eds) Wiley encyclopedia of composites, vol. 2, 2nd edn. Wiley, Inc. Hoboken

    Google Scholar 

  36. Prinos J, Panayiotou C (1995) Glass transition temperature in hydrogen-bonded polymer mixtures. Polymer 36:1223–1227

    Article  Google Scholar 

  37. Kelley FN, Bueche F (1961) Viscosity and glass temperature relations for polymer-diluent systems. J Polym Sci 50:549–556

    Article  Google Scholar 

  38. Turnbull D, Cohen M (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  Google Scholar 

  39. Turnbull D, Cohen M (1961) Free volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125

    Article  Google Scholar 

  40. Marquardt DW (1963) An algorithm for least squares estimation of non linear parameters. J Soc Ind Appl Math 11:431–441

    Article  MathSciNet  MATH  Google Scholar 

  41. Meier RJ (2005) On art and science in curve-fitting vibrational spectra. Vib Spectrosc 39:266–269

    Article  Google Scholar 

  42. Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  43. Noda I, Dowrey AE, Marcott C, Story GM, Ozaki Y (2000) Generalized two-dimensional correlation spectroscopy. Appl Spectrosc 54:236A–248A

    Article  Google Scholar 

  44. Ragosta G, Musto P, Abbate M, Scarinzi G (2011) Compatibilizing polyimide/silica hybrids by alkoxisilane-terminated oligoimides: morphology–properties relationships. J Appl Polym Sci 121:2168–2186

    Article  Google Scholar 

  45. Musto P, Mensitieri G, Lavorgna M, Scarinzi G, Scherillo G (2012) Combining gravimetric and vibrational spectroscopy measurements to quantify first- and second-shell hydration layers in polyimides with different molecular architectures. J Phys Chem B 116:1209–1220

    Article  Google Scholar 

  46. Iwamoto R, Matsuda T (2005) Interaction of water in polymers: poly(ethylene-co-vinyl acetate) and poly(vinyl acetate). J Pol Sci: Part B: Pol Phys 43:777–785

    Article  Google Scholar 

  47. Tsivintzelis I, Kontogeorgis GM (2009) Modeling the vapor—liquid equilibria of polymer—solvent mixtures: systems with complex hydrogen bonding behavior. Fluid Phase Equilib 280:100–109

    Article  Google Scholar 

  48. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–1099

    Article  Google Scholar 

  49. Fredenslund A, Sorensen MJ (1994) Group contribution estimation methods. In: Sandler SI (ed) Models for thermodynamic and phase equilibria calculations. Marcel Dekker, New York

    Google Scholar 

  50. Fougnies C, Damman P, Dosière M, Koch MHJ (1997) Time-resolved SAXS, WAXS, and DSC study of melting of poly(aryl ether ether ketone) (PEEK) annealed from the amorphous state. Macromolecules 30:1392–1399

    Article  Google Scholar 

  51. Polymer Data Handbook (1999). Mark JE (ed) Oxford University Press, New York

    Google Scholar 

  52. Lu SX, Cebe P, Calpel M (1996) Thermal stability and thermal expansion studies of PEEK and related polyimides. Polymer 37:2999–3009

    Article  Google Scholar 

  53. Zoller P, Walsh DJ (1995) Standard pressure volume temperature data for polymers. Technomic Publishing AG, Basel

    Google Scholar 

  54. Cotugno S, Mensitieri G, Musto P, Sanguigno L (2005) Molecular interactions in and transport properties of densely cross-linked networks: a time-resolved FT-IR spectroscopy investigation of the epoxy/H2O system. Macromolecules 38:801–811

    Article  Google Scholar 

  55. Mensitieri G, Lavorgna M, Musto P, Ragosta G (2006) Water transport in densely crosslinked networks: a comparison between epoxy systems having different interactive character. Polymer 47:8326–8336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Mensitieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Musto, P., Galizia, M., Scherillo, G., Mensitieri, G. (2014). Water Sorption Thermodynamics in Polymer Matrices. In: Davies, P., Rajapakse, Y. (eds) Durability of Composites in a Marine Environment. Solid Mechanics and Its Applications, vol 208. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7417-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7417-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7416-2

  • Online ISBN: 978-94-007-7417-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics