Skip to main content

Introduction: The components of Risk Governance

  • Chapter
  • First Online:

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 34))

Abstract

This introductory chapter discusses key issues related to aspects of hazards and risks of natural processes in Mountain area's and discusses the framework of risk governance, which aims to integrate these elements.

Hazard assessment intends to make an estimate of the spatial and temporal occurrence and magnitude of dangerous natural processes. The chapter describes different methods to assess hazard in a qualitative and quantitative way including all kind of data driven statistically approaches and the use of coupled hydro mechanical deterministic models.

Since statistical approaches, will meet difficulties in future predictions in case of changes of the environmental factors, like land use and climate, special attention is given to the use of physical deterministic models which makes it possible in theory to do predictions about hazard without historical data sets.

An overview is given of the different approaches to come to a final risk assessment. For a risk assessment information on temporal, spatial and intensity probabilities of the endangering processes is required as well as an identification of the vulnerability of the society for the impact of these processes. Vulnerability assessment, which forms a key element in these procedures still knows a lot of difficulties.

Current research on natural risks is fragmented and isolated with natural sciences and engineering disciplines on the one hand and societal sciences on the other hand. The complex, socio-political nature of risk calls for an integrated approach. A discussion is presented about the concept of risk governance, which tries to combine all the physical, technical, socio-economic and political aspects to take the right decisions for a safe and sustainable society.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

IUGS:

International Union of Geological Sciences

GIS:

Geographical Information Systems

ALARP:

As Low As Reasonably Practicable

EIA:

Environmental Impact Assessments

EWS:

Early Warning Systems

DEM’s:

Digital Elevation Models

LIDAR:

LIght Detection And Ranging

F-N curves:

Frequency vs. Number of fatality’ graphs

UN:

United Nations

UN-ISDR:

United Nations International Strategy for Disaster Reduction

EC:

European Commission

IRGC:

International Risk Governance Council

RG:

Risk Governance

RA:

Risk Assessment

RM:

Risk Management

RC:

Risk Communication

MORLE:

Multiple Occurrence Regional Landslide Events

References

  • Aleotti P, Chowdury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Alkema D, Middelkoop H (2005) The influence of floodplain compartmentalization on flood risk within the Rhine – Meuse delta. Nat Hazard 36(1–2):125–145

    Article  Google Scholar 

  • Armaş J, Avram E (2009) Perception of flood risk in Danube Delta, Romania. Nat Hazard 50(2):269–287

    Article  Google Scholar 

  • Baum RL, Godt JW (2009) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7:259–272

    Article  Google Scholar 

  • Berti M, Simoni A (2005) Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides 2(3):171–182

    Article  Google Scholar 

  • Blijenberg H (1998) Rolling stones? Triggering and frequency of hill slope debris flows in the Bachelard valley, southern French Alps. Netherlands Geographical Studies 246, Utrecht

    Google Scholar 

  • Bogaard TA, Van Asch TWJ (2002) The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf Processes Landf 27:1177–1188

    Article  Google Scholar 

  • Bonnard C, Noverraz F (2001) Influence of climate change on large scale landslides: assessment of long-term movements and trends. In: Landslides: causes, impacts and counter measures. Verlag Glückhauf, Essen/Davos

    Google Scholar 

  • Bowles DS (2004) ALARP evaluation: using cost effectiveness and disproportionality to justify risk reduction. ANCOLD Bull 127:89–106

    Google Scholar 

  • Brooks SM, Glade T, Crozier MJ, Anderson MG (2004) Towards establishing climatic thresholds for slope instability: use of a physically-based combined soil hydrology-slope stability model. Pure Appl Geophys 161(4):881–905

    Article  Google Scholar 

  • Brunsden D (1999) Some geomorphological considerations for the future development of landslide models. Geomorphology 30:13–24

    Article  Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 192(2):172–183

    Google Scholar 

  • Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazard 20(2–3):117–135

    Article  Google Scholar 

  • Casagli N, Farina P, Leva D, Tarchi D (2004) Application of ground-based radar interferometry to monitor an active rock slide and implications on the emergency management. In: Evans SG, Scarascia-Mugnozza G Strom A, Hermanns RL (eds) Landslides from massive rock slope failure. Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure – New Models for Hazard Assessment, Springer, Celano/Berlin, 16–21 June 2004

    Google Scholar 

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102(3–4):164–177

    Article  Google Scholar 

  • Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Hungr O, Fell R, Couture R, Eberthardt E (eds) Landslide risk management. Taylor & Francis, London

    Google Scholar 

  • Casson B, Delacourt C, Allemand P (2005) Contribution of multi-temporal sensing images to characterize landslide slip surface – application to the La Clapière Landslide (France). Nat Hazard Earth Syst Sci 5:425–437

    Article  Google Scholar 

  • Chacon J, Irigaray C, Fernandez T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65:341–411

    Article  Google Scholar 

  • Chatwin SC, Howes DE, Schwab JW, Swanston DN (1994) A guide for management of landslide-prone terrain in the Pacific North-West. Research Branch, Ministry of Forests, Victoria

    Google Scholar 

  • Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4):269–288

    Article  Google Scholar 

  • Cornforth DH (2005) Landslides in practice: investigation, analysis and remedial/preventative options in soils. Wiley, Hoboken

    Google Scholar 

  • Corominas J, (2013) Avoidance and protection measures. In: Shroder J (Editor in Chief), Marston RA, Stoffel M (eds) Treatise on geomorphology, vol 7, Mountain and hillslope geomorphology. Academic Press, San Diego, pp 259–272

    Google Scholar 

  • Corominas J, Moya C (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213

    Article  Google Scholar 

  • Corsini A, Farina P, Antonell G, Barbieri M, Casagli N, Coren F, Guerri L, Ronchetti F, Sterzai P, Tarchi D (2006) Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection. Int J Remote Sens 27(12):2351–2369

    Article  Google Scholar 

  • Crozier MJ (2005) Multiple occurrence regional landslide events in New Zealand: hazard management issues. Landslides 2:247–256

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatial temporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Processes Landf 28(5):527–545

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • Delacourt C, Allemand P, Berthier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Géol Fr. 178(2):89–100

    Google Scholar 

  • Dietrich WE, Bellugi D, Real de Asua R (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas, vol 2, Water science and application. American Geophysical Union, Washington, DC, pp 195–227

    Chapter  Google Scholar 

  • European Communities (2007) Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. European Communities, Brussels

    Google Scholar 

  • European Commission (2007) Territorial Agenda of the European Union. European Commission, Brussels

    Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International conference on landslide risk assessment and management, Vancouver

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Fredlund DG, Xing A, Fredlund MD, Barbours SL (1996) The relationship of the unsaturated shear strength to the soil-water characteristic curve. Can Geotech J 33(3):440–448

    Article  Google Scholar 

  • Fuchs S, Heiss K, Hόbl J (2007) Towards an empirical vulnerability function for use in debris flow risk assessment. Nat Hazard Earth Syst Sci 7:495–506

    Article  Google Scholar 

  • GEO – Geotechnical Engineering Office (2003) Layman’s guide to slope maintenance. The government of Hong Kong. Geotechnical Engineering Office, Hong Kong

    Google Scholar 

  • Glade T (2003) Vulnerability assessment in landslide risk analysis. Beitrage Erdsystemforschung 134(2):123–146

    Google Scholar 

  • Greiving S, Fleischhauer M, Wanczura S (2006) Management of natural hazards in Europe: the role of spatial planning in selected EU member states. J Environ Plann Manag 49(5):739–757

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005a) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267

    Google Scholar 

  • Guzzetti F, Salvati P, Stark CP (2005b) Evaluation of risk to the population posed by natural hazards in Italy. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London

    Google Scholar 

  • Hervouet JM, Van Haren L (1996) Recent advances in numerical methods for fluid flows. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes. Wiley, Chichester

    Google Scholar 

  • Hesselink AW, Stelling GS, Kwadijk JCJ, Middelkoop H (2003) Inundation of a Dutch river polder, sensitivity analysis of a physically based inundation model using historic data. Water Resour Res 39(9):1234

    Article  Google Scholar 

  • Highland L, Bobrowsky P (2008) The landslide handbook: a guide to understanding landslides. United States Geological Survey Circular 1325. U.S. Geological Survey, Reston

    Google Scholar 

  • Hungr O, Corominas J, Eberhardt E (2005) Estimating landslide motion mechanisms, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London

    Google Scholar 

  • IRGC – International Risk Governance Council (2005) White paper on risk governance: towards an integrative approach. IRGC, Geneva

    Google Scholar 

  • IUGS Working Group on Landslides, Committee on Risk Assessment (1997) Quantitative risk assessment for slopes and landslides-the state of the art. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam

    Google Scholar 

  • Jaboyedoff M, Ornstein P, Rouiller J-D (2004) Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar. Nat Hazard Earth Syst Sci 4:187–196

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellan A, Derron M-H, Loye A, Metzger R, Pedrazzini A (2010) Use of LiDAR in landslide investigations: a review. Nat Hazard 2010:1–24. doi:10.1007/s11069-010-9634-2

    Google Scholar 

  • Leroueil S, Locat J, Vaunat TJ, Picarelli L, Lee H, Fuare R (1996) Geotechnical characterization of slope movements. In: Seneset K (ed) Proceedings of the 7th international symposium on landslides. Balkema, Trondheim/Rotterdam

    Google Scholar 

  • Löfstedt R (2005) Risk management in post-trust societies. Palgrave Macmillan, Houndmills/Basingstoke/Hampshire/New York

    Book  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Processes Landf 29:687–711

    Article  Google Scholar 

  • Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides. Geomorphology 43(1–2):33–54

    Article  Google Scholar 

  • Malet JP, Maquaire O, Locat J, Remaître A (2004) Assessing debris flow hazard associated to slow-moving landslides: methodology and numerical analyses. Landslides 1:83–90

    Article  Google Scholar 

  • Malet JP, Van Asch TWJ, Van Beek LPH, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazard Earth Syst Sci 5:71–85

    Article  Google Scholar 

  • Mavrouli O-C, Corsini A, Corominas J (2012) Chapter 11: Disaster mitigation by corrective and protection measures. In: Van Asch TV, Corominas J, Greiving S, Malet J-P, Sterlacchini S (eds) Mountain risks: from prediction to management and governance. Springer, London, pp 303–326

    Google Scholar 

  • Monserrat A, Crosetto M (2008) Deformation measurement using Terrestrial Laser Scanning data and least squares 3D surface matching. ISPRS J Photogramm Remote Sens 63:142–154

    Article  Google Scholar 

  • Naterop D, Yeatman R (1995) Automatic measuring system for permanent monitoring: Solexperts Geomonitor. In: Proceedings of the 4th international symposium on field measurements in geomechanics (FMGM-1995), Bergamo, 18–23 April 1995

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Kreusen H-R (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosci 1(8):531–535

    Article  Google Scholar 

  • Pastor M, Manzanal D, Fernΰndez Merodo JA, Mira P, Blanc T, Drempetic V, Pastor MJ, Haddad B, Sanchez M (2010) From solids to fluidized soils diffuse failure mechanisms in geostructures with applications to fast catastrophic landslides. Granul Matter 132:211–228

    Article  Google Scholar 

  • Picarelli L, Russo C, Urcioli G (1995) Modelling earth flow movement based on experiences. In: Proceedings of the 11th European conference on soil mechanics and foundation engineering. Balkema, Copenhagen/Rotterdam

    Google Scholar 

  • Quan Luna B, Remaître A, Van Asch TWJ, Malet J-P, Van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63–75

    Article  Google Scholar 

  • Salvati P, Bianchi C, Rossi M, Guzzetti F (2010) Societal landslide and flood risk in Italy. Nat Hazard Earth Syst Sci 10:465–483

    Article  Google Scholar 

  • Slovic P (1999) Trust, emotion, sex, politics, and science: surveying the risk-assessment battlefield. Risk Anal 19(4):689–701

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation, Transportation Research Board, National Research Council, Special report 247. National Academy Press, Washington, pp 129–177

    Google Scholar 

  • Soil Thematic Strategy (2006) Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. Brussels

    Google Scholar 

  • Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79(3–4):215–229

    Article  Google Scholar 

  • Stark CP, Hovius N (2001) The characterisation of landslide size distributions. Geophys Res Lett 28:1091–1094

    Article  Google Scholar 

  • Stelling GS, Kernkamp HWJ, Laguzzi MM (1998) Delft Flooding System, a powerful tool for inundation assessment based upon a positive flow simulation. In: Babovic VM, Larsen LC (eds) Hydro-informatics. Balkema, Rotterdam

    Google Scholar 

  • Sun HW, Wong HN, Ho KKS (1998) Analysis of infiltration in unsaturated ground. In: Slope engineering in Hong-Kong. Balkema, Rotterdam

    Google Scholar 

  • Tang C, Renger N, van Asch TWJ, Yang YH, Wang GF (2011) Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, Northwestern China. Nat Hazard Earth Syst Sci 11:1–10. doi:10.5194/nhess-11-1-2011

    Article  Google Scholar 

  • Tarchi D, Casagli N, Fanti R, Leva DD, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68(1-2):15–30

    Article  Google Scholar 

  • Terlien MTJ, Van Westen CJ, Van Asch TWJ (1995) Deterministic modelling in GIS: landslide hazard assessment. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Rotterdam, pp 57–77

    Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28(16):3425–3446

    Article  Google Scholar 

  • Teza G, Pesci A, Genevois R, Galgaro A (2008) Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 97(3–4):424–437

    Article  Google Scholar 

  • Thiery Y (2007) Susceptibilité du Bassin de Barcelonnette (Alpes du Sud, France) aux ‘mouvements de versant’: cartographie morphodynamique, analyse spatiale et modélisation probabiliste. PhD thesis, University of Caen, Caen

    Google Scholar 

  • Travelletti J, Delacourt C, Allemand P, Malet J-P, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm Remote Sens 70:39–55

    Article  Google Scholar 

  • Turner AK, Schuster RL (1996) Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, DC

    Google Scholar 

  • United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2002) Natural disasters and sustainable development: Understanding the links between development, environment and natural Background Paper No. 5. Geneva. http://www.johannesburgsummit.org/html/documents/backgrounddocs/unisdr%20report.pdf

  • United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2005) Hyogo Framework for Action 2005-1015: Building the Resilience of Nations and Communities to Disasters, Tech. Report, World Conference on Disaster Reduction. Geneva

    Google Scholar 

  • United Nations-International Strategy for Disaster Reduction (UN-ISDR) (2009) Terminology on Disaster Risk Reduction. Geneva. http://www.unisdr.org/eng/terminology/terminology-2009-eng.html

  • Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256

    Article  Google Scholar 

  • Van Asch TWJ, Sukmantalya IN (1993) The modelling of soil slip erosion in the upper Komering area, South Sumatra-Province, Indonesia. Geogr Fisica Dinam Quat 16:81–86

    Google Scholar 

  • Van Asch TWJ, Hendriks MR, Hessel R, Rappange FE (1996) Hydrological triggering conditions of landslides in varvedclaysin the French Alps. Eng Geol 42:239–251

    Article  Google Scholar 

  • Van Asch TWJ, Van Beek LH, Bogaard T (2006) Problems in predicting the rate of slow moving landslides. Eng Geol 88:59–69

    Article  Google Scholar 

  • Van Asch TWJ, Malet JP, VanBeek LPH, Amitrano D (2007) Techniques, issues and advances in numerical modelling of landslide hazard. Bull Soc Geol Fr 178(2):65–88

    Google Scholar 

  • Van Beek LPH (2002) Assessment of the influence of changes in climate and land use on landslide activity in a Mediterranean environment. Geographical Studies 294, Utrecht

    Google Scholar 

  • Van Beek LPH, Van Asch TWJ (2003) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazard 31:289–304

    Article  Google Scholar 

  • Van Westen CJ, Seijmonsbergen AC, Mantovani F (1999) Comparing landslide hazard maps. Nat Hazard 20(2–3):137–158

    Article  Google Scholar 

  • Van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, Castellanos Abella EA, Sekhar LK (2008) Spatial data for landslide susceptibility, hazards and vulnerability assessment: an overview. Eng Geol 102(3–4):112–131

    Article  Google Scholar 

  • Vulliet L (1997) Three families of models to predict slowly moving landslides. In: Klubertanz G, Laloui L, Vulliet L (eds) Computer methods and advances in geomechanics. Balkema, Rotterdam

    Google Scholar 

  • Vulliet L (2000) Natural slopes in slow movement. In: Zaman M, Gioda G, Booker J (eds) Modeling in geomechanics. Wiley, Chichester, pp 653–676

    Google Scholar 

  • Zezere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda WA et al (eds) Landslides, evaluation and stabilization. Proceedings of the 9th international symposium on landslides, Rio de Janeiro

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo van Asch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Greiving, S., van Westen, C., Corominas, J., Glade, T., Malet, JP., van Asch, T. (2014). Introduction: The components of Risk Governance. In: Van Asch, T., Corominas, J., Greiving, S., Malet, JP., Sterlacchini, S. (eds) Mountain Risks: From Prediction to Management and Governance. Advances in Natural and Technological Hazards Research, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6769-0_1

Download citation

Publish with us

Policies and ethics