Skip to main content

Analysis of Lava Flow Effusion Rate Using High Spatial Resolution Infrared Data

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 17))

  • 6986 Accesses

Abstract

Remote sensing thermal data of active lava flows allow for the evaluation of instantaneous effusion rates. This is made possible by simple formulae relating the lava effusion rate to the power energy radiated per unit time from the surface to the flow. The most questionable assumption is probably the constancy of the surface temperature. Due to the assumptions of the model, this formula implies that heat flux, surface temperature and lava temperature varies as a function of the flow thickness. These relationships, never verified or validated before, have been used by several authors as a proof of the weakness of the model. Herein, MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) high spatial resolution (5–10 m) thermal data acquired during Etna’s 2001 eruption were used to investigate down-flow heat-flux variations in the lava flow emitted from a vent located at 2,100 m a.s.l. A high correlation between the down-flow heat-flux and the lava flow thickness (measured from a pre-existing digital elevation model) was found. According to this relationship, observed changes in the surface temperature would be the expected consequence of differences in the down-flow lava flow thickness due to topographic variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barberi F, Villari L (1994) Volcano monitoring and civil protection problems during the 1991–1993 Etna eruption. Acta Vulcanol 4:157–166

    Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476

    Article  Google Scholar 

  • Calvari S, Pinkerton H (2004) Birth, growth and morphologic evolution of the “Laghetto” cinder cone during the 2001 Etna eruption. J Volcanol Geotherm Res 132:225–239. doi:10.1016/S0377-0273(03)00347-0

    Article  Google Scholar 

  • Calvari S, Coltelli M, Neri M, Pompilio M, Scribano V (1994) The 1991–1993 Etna eruption: chronology and geological observations. Acta Vulcanol 4:1–14

    Google Scholar 

  • Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Lava flow mapping: the case of 2001 flank eruption of Etna. J Geophys Res 112:F02029. doi:10.1029/2006JF000598

    Article  Google Scholar 

  • Dragoni M, Tallarico A (2009) Assumptions in the evaluation of effusion rates from heat radiation. Geophys Res Lett 36:L08302. doi:10.1029/2009GL037411

    Article  Google Scholar 

  • Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010) The distal segment of Etna’s 2001 basaltic lava flow. Bull Volcanol 72:119–127. doi:10.1007/s00445-009-0300-z

    Article  Google Scholar 

  • Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997a) Low cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59:49–64

    Article  Google Scholar 

  • Harris AJL, Blake S, Rothery DA, Stevens NF (1997b) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102:7985–8003

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Vulcanol 60:52–71

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999) Mass flux measurements at active lava lakes: implications for magma recycling. J Geophys Res 104(B4):7117–7136

    Article  Google Scholar 

  • Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafta and their implications for eruptive mechanisms. J Vulcanol Geotherm Res 102:237–269

    Article  Google Scholar 

  • Harris AJL, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. GSA special paper 396, pp 125–146

    Google Scholar 

  • Harris AJL, Favalli M, Mazzarini F, Pareschi MT (2007) Best-fit results application of a thermo-rheological model for channelized lava flow to high-spatial resolution morphological data. Geophys Res Lett 34:L01301. doi:10.1029/2006GL028126,2007

    Article  Google Scholar 

  • Kneizys FX, Shettle EP, Gallery WO, Chetwynd Jr JH, Abreu LW, Selby JEA, Clugh SA, Fenn RW (1983) Atmospheric transmittance/radiance: computer code LOWTRAN 6. Environ Res Pap 846. Air Force Geophys Lab Hanscom AFB, MA

    Google Scholar 

  • Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa 1984. USGS professional paper 1350, pp 1527–1567

    Google Scholar 

  • Lombardo V, Buongiorno MF (2006) Lava flow thermal analysis using three infrared bands of remote sensing imagery: a study case from Mt.Etna 2001 eruption. Remote Sens Environ 101(2):141–149

    Article  Google Scholar 

  • Lombardo V, Buongiorno MF, Merucci L, Pieri DC (2004) Differences in Landsat TM derived lava flow thermal structure during summit and flank eruption at Mount Etna. J Volcanol Geotherm Res 134(1–2):15–34

    Article  Google Scholar 

  • Lombardo V, Buongiorno MF, Amici S (2006) Characterization of volcanic thermal anomalies by means of sub-pixel temperature distribution analysis. Bull Volcanol 68(07–08):641–651

    Article  Google Scholar 

  • Lombardo V, Harris AJL, Calvari S, Buongiorno MF (2009) Spatial variations in lava flow field thermal structure and effusion rate derived from very high spatial resolution hyperspectral (MIVIS) data. J Geophys Res 114:B02208. doi:10.1029/2008JB005648

    Article  Google Scholar 

  • Oppenheimer C (1991) Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay eruption (Chile, 1989). J Geophys Res 96:21865–21878

    Article  Google Scholar 

  • Oppenheimer C, Francis PW, Rothery DA, Carlton RWT, Glaze L (1993a) Infrared image analysis of volcanic thermal features: Làscar Volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286

    Article  Google Scholar 

  • Oppenheimer C, Rothery DA, Pieri DC, Abrams MJ, Carrere V (1993b) Analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of volcanic hot spots. Int J Remote Sens 14(16):2919–2934

    Article  Google Scholar 

  • Oppenheimer C, Rothery DA, Francis PW (1993c) Thermal distribution at fumarole fields: implications for infrared remote sensing of active volcanoes. J Volcanol Geotherm Res 55:97–115

    Article  Google Scholar 

  • Pieri DC, Baloga S (1986) Eruption rate, area and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30(29):45

    Google Scholar 

  • Pinkerton H, James M, Jones A (2002) Surface temperature measurements of active lava flows on Kilauea volcano, Hawai’i. J Volcanol Geotherm Res 113:159–176

    Article  Google Scholar 

  • Wadge G (1977) The storage and release of magma on Mount Etna. J Volcanol Geotherm Res 2:361–384

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Philos Trans R Soc Lond A274:107–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Lombardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lombardo, V., Buongiorno, M.F. (2013). Analysis of Lava Flow Effusion Rate Using High Spatial Resolution Infrared Data. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_19

Download citation

Publish with us

Policies and ethics