Skip to main content

Extremophilic Magnetotactic Bacteria

  • Chapter
  • First Online:
Polyextremophiles

Abstract

Magnetotactic bacteria represent a diverse group of motile prokaryotes that biomineralize intracellular, membrane-bounded, and tens-of-nanometer-sized crystals of a magnetic mineral, either magnetite (Fe3O4) or greigite (Fe3S4). These structures are called magnetosomes and cause cells to align along the Earth’s geomagnetic field lines as they swim, a trait called magnetotaxis. Magnetotactic bacteria are known to mainly inhabit the oxic-anoxic interface (OAI) of aquatic habitats, and it is currently thought that the magnetosomes function as a means of making chemotaxis more efficient in locating and maintaining an optimal position for growth and survival at the OAI. Until recently, no species of magnetotactic bacteria was ever found to be present in extreme environments. Recently, however, alkalophilic and moderately thermophilic magnetotactic bacteria were described and opened the possibility of the existence of magnetotactic bacteria in other extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Qudah O, Woocay A, Walton J (2011) Identification of probable groundwater paths in the Amargosa Desert vicinity. Appl Geochem 26:565–574

    Article  CAS  Google Scholar 

  • Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 25–36

    Chapter  Google Scholar 

  • Anderson JP (1978) A geochemical study of the southwest part of the Black Rock Desert and its geothermal areas; Washoe, Pershing, and Humboldt Counties, Nevada. Colo School Mines Q 73:15–22

    CAS  Google Scholar 

  • Arató B, Szányi Z, Flies C, Schüler D, Frankel RB, Buseck PR, Pósfai M (2005) Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker. Am Mineral 90:1233–1240

    Article  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Schübbe S (2007) Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62:21–62

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL, Bowser SS, Dean AJ, Beveridge TJ (2012) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol 63:801–808

    Google Scholar 

  • Bell PE, Mills AL, Herman JS (1987) Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction. Appl Environ Microbiol 53:2610–2616

    PubMed  CAS  Google Scholar 

  • Bellini S (2009a) On a unique behavior of freshwater bacteria. Chin J Oceanol Limnol 27:3–5

    Article  Google Scholar 

  • Bellini S (2009b) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limnol 27:6–12

    Article  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  PubMed  CAS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Pósfai M, Weyland M (2001) Magnetite morphology and life on mars. Proc Natl Acad Sci USA 98:13490–13495

    Article  PubMed  CAS  Google Scholar 

  • Chang SBR, Kirschvink JL (1989) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu Rev Earth Planet Sci 17:169–195

    Article  CAS  Google Scholar 

  • Chavadar MS, Bajekal SS (2009) Magnetotactic bacteria from Lonar lake. Curr Sci 96:957–959

    CAS  Google Scholar 

  • Chavadar MS, Bajekal SS (2010) Microaerophilic magnetotactic bacteria from Lonar Lake, India. J Pure Appl Microbiol 4:681–685

    Google Scholar 

  • Clemett SJ, Thomas-Keprta KL, Shimmin J, Morphew M, McIntosh JR, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Crystal morphology of MV-1 magnetite. Am Mineral 87:1727–1730

    CAS  Google Scholar 

  • Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447–459

    Article  PubMed  CAS  Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Zhang L, Bazylinski DA (2010) The deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    Article  PubMed  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Miner 54:217–247

    Article  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J 73:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Gehring A, Kind J, Charilaou M, García-Rubio I (2011) The detection of magnetotactic bacteria and magnetofossils by means of magnetic anisotropy. Earth Planet Sci Lett 309:113–117

    Article  CAS  Google Scholar 

  • Haouari O, Fardeau M-L, Cayol J-L, Fauque G, Casiot C, Elbaz-Poulichet F, Hamdi M, Ollivier B (2008) Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Syst Appl Microbiol 31:38–42

    Article  PubMed  CAS  Google Scholar 

  • Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM, Ming DW, Catling DC, Clark BC, Boynton WV, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of per­chlorate and the soluble chemistry of martian soil at the Phoenix Lander site. Science 325:64–67

    PubMed  CAS  Google Scholar 

  • Hoeft SE, Kulp TR, Stolz JF, Hollibaugh JT, Oremland RS (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with mono lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol 70:2741–2747

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res Biogeo 115:G00–G03

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Article  CAS  Google Scholar 

  • Kempe S, Kazmierczak J (1997) A terrestrial model for an alkaline Martian hydrosphere. Planet Space Sci 45:1493–1495

    Article  CAS  Google Scholar 

  • Kind J, Gehring AU, Winklhofer M, Hirt AM (2011) Combined use of magnetometry and spectroscopy for identifying magnetofossils in sediments. Geochem Geophys Geosyst 12:Q08008

    Article  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721

    Article  PubMed  CAS  Google Scholar 

  • Kopp RE, Kirschvink JL (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci Rev 86:42–61

    Article  Google Scholar 

  • Kounaves SP, Hecht MH, Kapit J, Gospodinova K, DeFlores L, Quinn RC, Boynton WV, Clark BC, Catling DC, Hredzak P, Ming DW, Moore Q, Shusterman J, Stroble S, West SJ, Yound SMM (2010) Wet chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: data analysis and results. J Geophys Res 115:E00–E10

    Article  Google Scholar 

  • Krulwich TA (2006) Alkaliphilic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 283–308

    Google Scholar 

  • Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS (2007) Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl Environ Microbiol 73:5130–5137

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Abreu F, Lins U, Bazylinski DA (2010a) Non-magnetotactic multicellular prokaryotes from low saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 76:3220–3227

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010b) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada USA. Appl Environ Microbiol 76:3740–3743

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA (2011a) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13:2342–2350

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel RB, Bazylinski DA (2011b) A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–1723

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB, Bazylinski DA (2012) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450

    Article  PubMed  Google Scholar 

  • Martins JL, Silveira TS, Silva KP, Lins U (2009) Salinity dependence of the distribution of multicellular magnetotactic prokaryotes in a hypersaline lagoon. Int Microbiol 12:193–201

    PubMed  CAS  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  PubMed  CAS  Google Scholar 

  • McNeill DF, Ginsburg RN, Chang SBR, Kirschvink JL (1988) Magnetostratigraphic dating of shallow-water carbonates from San Salvador, the Bahamas. Geology 16:8–12

    Article  Google Scholar 

  • Nash C (2008) Mechanisms and evolution of magnetotactic bacteria. PhD thesis, California Institute of Technology, Pasadena

    Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    PubMed  CAS  Google Scholar 

  • Oremland RS, Dowdle PR, Hoeft S, Sharp JO, Schaefer JK, Miller LG, Switzer Blum J, Smith RL, Bloom NS, Wallschlaeger D (2000) Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim Cosmochim Acta 64:3073–3084

    Article  CAS  Google Scholar 

  • Petermann H, Bleil U (1993) Detection of live magnetotactic bacteria in deep-sea sediments. Earth Planet Sci Lett 117:223–228

    Article  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249:444–455

    Article  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  • Sakai S, Jige M (2006) Characterization of magnetic particles and magnetostratigraphic dating of shallow-water carbonates in the Ryukyu Islands, northwestern Pacific. Island Arc 15:468–475

    Article  CAS  Google Scholar 

  • Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Kohler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Article  Google Scholar 

  • Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790

    Article  PubMed  Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    Article  PubMed  Google Scholar 

  • Stolz JF, Chang SBR, Kirschvink JL (1986) Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321:849–851

    Article  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  PubMed  CAS  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284

    Article  PubMed  CAS  Google Scholar 

  • Wiemeyer S (2005) Metals and trace elements in water, sediment, and vegetation at Ash Meadows National Wildlife Refuge-1993. Report by the United States Fish and Wildlife Service, Nevada Field Station

    Google Scholar 

  • Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA (2012) Magnetospira thiophila, gen. nov. sp. nov., a new marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 62:2443–2450. doi:10.1099/ijs.0.037697-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Much of the work described here was supported by US National Science Foundation grant EAR-0920718 awarded to D.A.B. C.T.L. was the recipient of an award from the Fondation pour la Recherche Médicale FRM: SPF20101220993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lefèvre, C.T., Bazylinski, D.A. (2013). Extremophilic Magnetotactic Bacteria. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_27

Download citation

Publish with us

Policies and ethics