Skip to main content

Macrophage Differentiation and Activation States in the Tumor Microenvironment

  • Chapter
  • First Online:
Book cover The Tumor Immunoenvironment
  • 2250 Accesses

Abstract

Macrophages are amongst the most plastic cells of the body, contributing to organogenesis and tissue homeostasis and regulating the balance between pro- and anti-inflammatory reactions. To accommodate these different functions, macrophages are notoriously heterogeneous and are able to adopt different activation states in response to a changing microenvironment. Accumulating evidence exists that macrophages contribute to all phases of the cancer process. These cells are central players in inflammation-associated carcinogenesis, participate in tumor immunosurveillance, and are involved in tumor progression and metastasis. Inside tumors, tumor-associated macrophages (TAM) are confronted with different tumor microenvironments, leading to TAM subsets with distinct activation states and specialized functions. A better refinement of the molecular and functional heterogeneity of tumor-associated macrophages might pave the way for novel cancer therapies that directly target these tumor-supporting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharinejad S, Paulus P, Sioud M, Hofmann M, Zins K, Schäfer R et al (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res 64:5378–5384

    Article  PubMed  CAS  Google Scholar 

  • Andreu P, Johansson M, Affara NI, Pucci F, Tan T, Junankar S et al (2010) FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Lin CF, Skinner KA, Schiffhauer LM, Peacock J, Hicks DG et al (2011) Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res 71:318–327

    Article  PubMed  CAS  Google Scholar 

  • Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al (2012) Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835

    Article  PubMed  CAS  Google Scholar 

  • Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616

    Article  PubMed  CAS  Google Scholar 

  • Beck AH, Espinosa I, Edris B, Li R, Montgomery K, Zhu S (2009) The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res 15:778–787

    Article  PubMed  CAS  Google Scholar 

  • Bindea G, Mlecnik B, Fridman WH, Pagès F, Galon J (2010) Natural immunity to cancer in humans. Curr Op Immunol 22:215–222

    Article  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  • Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M et al (2006) A distinct and unique transcriptional programme expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107:2112–2122

    Article  PubMed  CAS  Google Scholar 

  • Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M et al (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci USA 102:14825–14830

    Article  PubMed  CAS  Google Scholar 

  • Casazza A, Fu X, Johansson I, Capparuccia L, Andersson F, Giustacchini A et al (2011) Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis and progression in mouse tumor models. Arterioscler Thromb Vasc Biol 31:741–749

    Article  PubMed  CAS  Google Scholar 

  • Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    PubMed  CAS  Google Scholar 

  • Chan Y-C, Chen T-C, Lee C-T, Yang C-Y, Wang H-W, Wang C-C et al (2008) Epigenetic control of MHC-II expression in tumor-associated macrophages by decoy receptor 3. Blood 111:5054–5063

    Article  CAS  Google Scholar 

  • Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J et al (2010) Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2:63ra94

    Google Scholar 

  • Charles KA, Kulbe H, Soper R, Escorcio-Correia M, Lawrence T, Schultheis A et al (2009) The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010a) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176:1564–1576

    Article  PubMed  Google Scholar 

  • Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C et al (2010b) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res 70:5270–5280

    Article  PubMed  CAS  Google Scholar 

  • Coffelt SB, Chen YY, Muthana M, Welford AF, Tal AO, Scholz A et al (2011) Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol 186:4183–4190

    Article  PubMed  CAS  Google Scholar 

  • Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 109:2491–2496

    Article  PubMed  CAS  Google Scholar 

  • Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, Hofgaard PO et al (2005) Primary antitumor immune response mediated by CD4+ T cells. Immunity 22:371–383

    Article  PubMed  CAS  Google Scholar 

  • Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  • Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    Article  PubMed  CAS  Google Scholar 

  • Curry JM, Eubank TD, Roberts RD, Wang Y, Pore N, Maity A et al (2008) M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo. PLoS One 3:e3405

    Article  PubMed  CAS  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  CAS  Google Scholar 

  • De Palma M, Mazzieri R, Politi LS, Pucci F, Zonari E, Sitia G et al (2008) Tumor-targeted interferon-alpha delivery by Tie2-expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14:299–311

    Article  PubMed  CAS  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423

    Article  PubMed  CAS  Google Scholar 

  • DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N et al (2009) CD4+T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y et al (2010) A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176:952–967

    Article  PubMed  CAS  Google Scholar 

  • Dineen SP, Lynn KD, Holloway SE, Miller AF, Sullivan JP, Shames DS et al (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    Article  PubMed  CAS  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1α suppresses T cell function and promotes tmor progression. Cancer Res 70:7465–7475

    Article  PubMed  CAS  Google Scholar 

  • Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C et al (2010) Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40:22–35

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Soto A, Sierra-Filardi E, Puig-Kröger A, Perez-Maceda B, Gomez-Aguado F, Corcuera MT et al (2011) Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. J Immunol 186:2192–2200

    Article  PubMed  CAS  Google Scholar 

  • Egeblad M, Ewald AJ, Askautrud HA, Truitt ML, Welm BE, Bainbridge E et al (2008) Visualizing stromal cell dynamics in different tmor microenvironments by spinning disk confocal microscopy. Dis Mod Mech 1:155–167

    Article  Google Scholar 

  • Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  PubMed  CAS  Google Scholar 

  • Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, Vieweg J et al (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182:7548–7557

    Article  PubMed  CAS  Google Scholar 

  • Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S (2010) Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol 88:839–848

    Article  PubMed  CAS  Google Scholar 

  • Espinosa I, Beck AH, Lee CH, Zhu S, Montgomery KD, Marinelli RJ et al (2009) Coordinate expression of colony-stimulating factor-1 and colony-stimulating-factor-1-related proteins is associated with poor prognosis in gynaecological and nongynecological leiomyosarcoma. Am J Pathol 174:2347–2356

    Article  PubMed  CAS  Google Scholar 

  • Eubank TD, Roberts RD, Khan M, Curry JM, Nuovo GJ, Kuppusamy P et al (2009) Granulocyte macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69:2133–2140

    Article  PubMed  CAS  Google Scholar 

  • Fang H-Y, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL et al (2009) Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859

    Article  PubMed  CAS  Google Scholar 

  • Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGFβ. Nat Rev Immunol 10:554–567

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Wang SC, Morris JP 4th, Folias AE, Liou A, Kim GE et al (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19:441–455

    Article  PubMed  CAS  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tmors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Gocheva V, Wang H-W, Gadea BB, Shree T, Hunter KE, Garfall AL et al (2010) IL-4 induces cathepsin protease activity in tmor-associated macrophages to promote cancer growth and invasion. Genes Dev 24:241–255

    Article  PubMed  CAS  Google Scholar 

  • Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10:137–142

    Article  PubMed  CAS  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  PubMed  CAS  Google Scholar 

  • Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ et al (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  • Greeneltch KM, Schneider M, Steinberg SM, Liewehr DJ, Stewart TJ, Liu K et al (2007) Host immunosurveillance controls tumor growth via IFN regulatory factor-8-dependent mechanisms. Cancer Res 67:10406–10416

    Article  PubMed  CAS  Google Scholar 

  • Greifenberg V, Ribechini E, Rössner S, Lutz MB (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876

    Article  PubMed  CAS  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  PubMed  CAS  Google Scholar 

  • Grip O, Janciauskiene S, Lindgren S (2003) Macrophages in inflammatory bowel disease. Curr Drug Targets Inflamm Allergy 2:155–160

    Article  PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  • Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages a nd dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    PubMed  CAS  Google Scholar 

  • Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG et al (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Hart KM, Bak SP, Alonso A, Berwin B (2009) Phenotypic and functional delineation of murine CX(3)CR1 monocyte-derived cells in ovarian cancer. Neoplasia 11:564–573

    PubMed  CAS  Google Scholar 

  • Hassanzadeh Ghassabeh G, De Baetselier P, Brys L, Noël W, Van Ginderachter JA, Meerschaut S et al (2006) Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo during different pathologies. Blood 108:575–583

    Article  CAS  Google Scholar 

  • Hernandez L, Smirnova T, Kedrin D, Wyckoff J, Zhu L, Stanley ER et al (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta 1 and CXCL12. Cancer Res 69:3221–3227

    Article  PubMed  CAS  Google Scholar 

  • Herr B, Zhou J, Werno C, Menrad H, Namgaladze D, Weigert A et al (2009) The supernatant of apoptotic cells causes transcriptional activation of HIF-1(alpha) in macrophages via sphingosine-1-phosphate and transforming growth factor-(beta). Blood 114:2140–2148

    Article  PubMed  CAS  Google Scholar 

  • Heymann F, Trautwein C, Tacke F (2009) Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets 8:307–318

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T et al (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108:302–307

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW et al (1998) Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58:1208–1216

    PubMed  CAS  Google Scholar 

  • Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan L-J et al (2010) Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tmor inflammation. J Clin Invest 120:2699–2714

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal M, LaRusso NF, Gores GJ (2001) Nitric oxide in gastrointestinal epithelial cell carcinogensis: linking inflammation to oncogenesis. Am J Physiol 281:G626–G634

    CAS  Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

    Article  PubMed  CAS  Google Scholar 

  • Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci. U S A 93:7690–7694

    Article  PubMed  CAS  Google Scholar 

  • Kaparakis M, Walduck AK, Price JD, Pedersen JS, van Rooijen N, Pearse MJ et al (2008) Macrophages are mediators of gastritis in acute Helicobacter pylori infection in C57BL/6 mice. Infect Immun 76:2235–2239

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    Article  PubMed  CAS  Google Scholar 

  • Kedrin D, Gligorijevic B, Wyckoff J, Verkhusha VV, Condeelis J, Segall JE et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  PubMed  CAS  Google Scholar 

  • Kim HW, Mrakami A, Williams MV, Ohigashi H (2003) Mutagenicity of reactive oxygen and nitrogen species as detected by co-culture of activated inflammatory leukocytes and AS52 cells. Carcinogenesis 24:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Wang J, Willingham SB, Martin R, Wernig G, Weissman IL (2012) Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia, 30 May 2012. doi: 10.1038/leu.2012.141. (Epub ahead of print)

    Google Scholar 

  • Knight B, Yeoh GC, Hsk KL, Ly T, Abraham LJ, Yu C et al (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 192:1809–1818

    Article  PubMed  CAS  Google Scholar 

  • Ko JS, Rayman P, Ireland J, Swaidani S, Li G, Bunting KD et al (2010) Direct and differential suppression of myeloid-derived suppressor cell subsets by Sunitinib is compartmentally constrained. Cancer Res 70:3526–3536

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T et al (2009) Regulation of the IL-23 and IL-12 balance by STAT3 signaling in the tumor microenvironment. Cancer Cell 15:114–123

    Article  PubMed  CAS  Google Scholar 

  • Kuang D-M, Wu Y, Chen N, Cheng J, Zhuang S-M, Zheng L (2007) Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood 110:587–595

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M et al (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206:1089–1102

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev S (2005) Gabrilovich D.I. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891

    PubMed  CAS  Google Scholar 

  • Lee HD, Koo BH, Kim YH, Jeon OH, Kim DS (2012) Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J 6:3084–3095

    Article  CAS  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct roles of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  • Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–739

    Article  PubMed  CAS  Google Scholar 

  • Liu BY, Soloviev I, Chang P, Lee J, Huang X, Zhong C et al (2010) Stromal cell-derived factor-1/CXCL12 contributes to MMTV-Wnt1 tumor growth involving Gr+CD11b+ cells. PLoS One 5:e8611

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Zhou H, Krueger J, Kaplan C, Lee S-H, Dolman C et al (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141

    Article  PubMed  CAS  Google Scholar 

  • Luo YP, Zhou H, Krueger J, Kaplan C, Liao D, Markowitz D et al (2009) The role of proto-oncogene Fra-1 in remodeling the tumor microenvironment in support of breast tumor cell invasion and progression. Oncogene 29:662–673

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Kamata H, Luo J-L, Leffert H, Karin M (2005) IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan NR, Zanetti M (2011) Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. J Immunol 187:4403–4409

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M (2011) Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci U S A 108:6561–6566

    Article  PubMed  CAS  Google Scholar 

  • Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Op Immunol 22:231–237

    Article  CAS  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32:790–802

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • Marton A, Vizler C, Kusz E, Temesfoi V, Szathmary Z, Nagy K et al (2012) Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro. Immunol Lett. 8 Aug (E-pub ahead of print)

    Google Scholar 

  • Marttila-Ichihara F, Auvinen K, Elima K, Jalkanen S, Salmi M (2009) Vascular adhesion protein-1 enhances tumor growth by supporting recruitment of Gr-1+CD11b+ myeloid cells into tumors. Cancer Res 69:7875–7883

    Article  PubMed  CAS  Google Scholar 

  • Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A et al (2011) Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19:512–526

    Article  PubMed  CAS  Google Scholar 

  • Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell suppressive activity. Blood 111:4233–4244

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Article  PubMed  CAS  Google Scholar 

  • Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K et al (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–4177

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Yamamoto S, Osawa T, Shibuya M (2010) Vascular endothelial growth factor receptor-1 signaling promotes mobilization of macrophage lineage cells from bone marrow and stimulates solid tumor growth. Cancer Res 70:8211–8221

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tmors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  • Murdoch C, Tazzyman S, Webster S, Lewis CE (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178:7405–7411

    PubMed  CAS  Google Scholar 

  • Muthana M, Giannoudis A, Scott SD, Fang H-Y, Coffelt SB, Morrow FJ et al (2011) Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res 71:1805–1815

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D et al (2009) Regulatory myeloid suppressor cells in health and disease. Cancer Res 69:7503–7506

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ et al (2010) Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 16:1812–1823

    Article  PubMed  CAS  Google Scholar 

  • Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ et al (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488–503

    Article  PubMed  CAS  Google Scholar 

  • Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    Article  PubMed  CAS  Google Scholar 

  • Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474

    PubMed  CAS  Google Scholar 

  • Nocito A, Dahm F, Jochum W, Jang JH, Georgiev P, Bader M et al (2008) Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res 68:5152–5158

    Article  PubMed  CAS  Google Scholar 

  • Nowicki A, Szenajch J, Ostrowska G, Wojtowicz A, Wojtowicz K, Kruszewski AA et al (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer 65:112–119

    Article  PubMed  CAS  Google Scholar 

  • Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184:702–712

    Article  PubMed  CAS  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809

    Article  PubMed  CAS  Google Scholar 

  • Oshima H, Hioki K, Popivanova BK, Oguma K, van Rooijen N, Ishikawa TO, Oshima M (2011) Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors. Gastroenterology 140:596–607

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Article  PubMed  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  • Ostrand-Rosenberg S, Clements VK, Terabe M, Park JM, Berzofsky JA, Dissanayake SK (2002) Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and non-hemopoietic cells and is IFN-gamma dependent. J Immunol 169:5796–5804

    PubMed  CAS  Google Scholar 

  • Pahler JC, Tazzyman S, Erez N, Chen YY, Murdoch C, Nozawa H et al (2008) Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10:329–340

    PubMed  CAS  Google Scholar 

  • Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  PubMed  CAS  Google Scholar 

  • Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    PubMed  CAS  Google Scholar 

  • Popivanova BK, Kostadinova FI, Furuichi K, Shamekh MM, Kondo T, Wada T et al (2009) Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res 69:7884–7892

    Article  PubMed  CAS  Google Scholar 

  • Poutsiaka DD, Schroder EW, Taylor DD, Levy EM, Black PH (1985) Membrane vesicles shed by murine melanoma cells selectively inhibit the expression of Ia antigen by macrophages. J Immunol 134:138–144

    PubMed  CAS  Google Scholar 

  • Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL et al (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of anti-angiogenic therapy. Blood 115:1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Pucci F, Venneri MA, Biziato D, Nonis A, Moi D, Sica A et al (2009) A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114:901–914

    Article  PubMed  CAS  Google Scholar 

  • Puig-Kröger A, Sierra-Filardi E, Dominguez-Soto A, Samaniego R, Corcuera MT, Gomez-Aguado F et al (2009) Folate receptor β is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69:9395–9403

    Article  PubMed  CAS  Google Scholar 

  • Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21:836–847

    Article  PubMed  CAS  Google Scholar 

  • Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  CAS  Google Scholar 

  • Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127

    Article  PubMed  CAS  Google Scholar 

  • Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcritional regulation of HIF-1alpha. Nature 453:807–811

    Article  PubMed  CAS  Google Scholar 

  • Robinson BD, Sica GL, Liu YF, Rohan TE, Gertier FB, Condeelis JS et al (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15:2433–2441

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  • Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C et al (2011) HRG inhibits tumor growth and metastasis by inducing macropage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19:1–14

    Article  CAS  Google Scholar 

  • Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L et al (2006) p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res 66:11432–11440

    Article  PubMed  CAS  Google Scholar 

  • Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Stolina M, Yang SC, Baratelli F, Lin JF, Atianzar K et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  • Sharma M, Beck AH, Webster JA, Espinosa I, Montgomery K, Varma S et al (2010) Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Res Treat 123:397–404

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S et al (2007a) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr-1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

  • Shojaei F, Wu X, Zhong C, Yu L, Liang XH, Yao J et al (2007b) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450:825–831

    Article  PubMed  CAS  Google Scholar 

  • Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, Van Damme J et al (2000) Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages. J Immunol 164:762–767

    PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Ostrand-Rosenberg S (2005) IL-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res 65:11743–11751

    Article  PubMed  CAS  Google Scholar 

  • Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  • Song L, Asgharzadeh S, Salo J, Engell K, Wu H-W, Sposto R et al (2009) Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119:1524–1536

    Article  PubMed  CAS  Google Scholar 

  • Standiford TJ, Kuick R, Bhan U, Chen J, Newstead M, Keshamouni VG (2011) TGF-β-induced IRAK-M expression in tumor-assoiated macrophages regulates lung tumor growth. Oncogene 30:2475–2484

    Article  PubMed  CAS  Google Scholar 

  • Stout RD, Watkins SK, Suttles J (2009) Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J Leukoc Biol 86:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD et al (2008) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105:652–656

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, O’Dea EL, Doedens A, Kim J-W, Weidemann A, Stockmann C et al (2010) Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev 24:491–501

    Article  PubMed  CAS  Google Scholar 

  • Takizawa T, Nishinarita S, Kitamura N, Hayakawa J, Kang H, Tomita Y et al (1995) Interaction of the cell-binding domain of fibronectin with VLA-5 integrin induces monokine production in cultured human monocytes. Clin Exp Immunol 101:376–382

    PubMed  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33:441–454

    Article  PubMed  CAS  Google Scholar 

  • Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    PubMed  Google Scholar 

  • Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K et al (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    PubMed  CAS  Google Scholar 

  • Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K et al (2008) Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 83:1–9

    Article  CAS  Google Scholar 

  • Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A et al (2006) Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–9298

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche J, Bogaert P, van Hengel J, Guérin CJ, Berx G, Movahedi K et al (2009) Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114:4664–4674

    Article  PubMed  CAS  Google Scholar 

  • Van den Bossche J, Lamers WH, Koehler ES, Geuns JM, Alhonen L, Uimari A et al (2012) Pivotal advance: arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. J Leukoc Biol 91:685–699

    Article  PubMed  Google Scholar 

  • Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S, Beschin A, Raes G et al (2006a) Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 211:487–501

    Article  PubMed  CAS  Google Scholar 

  • Van Ginderachter JA, Meerschaut S, Liu Y, Brys L, De Groeve K, Hassanzadeh Ghassabeh G et al (2006b) Peroxisome proliferator-activated receptor (PPAR) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood 108:525–535

    Article  PubMed  CAS  Google Scholar 

  • Van Ginderachter JA, Movahedi K, Van den Bossche J, De Baetselier P (2008) Macrophages, PPARs, and cancer. PPAR Res 2008:169414

    PubMed  Google Scholar 

  • Van Ginderachter JA, Beschin A, De Baetselier P, Raes G (2010) Myeloid-derived suppressor cells in parasitic infections. Eur J Immunol 40:2976–2985

    Article  PubMed  CAS  Google Scholar 

  • Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276–5285

    Article  PubMed  CAS  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  PubMed  CAS  Google Scholar 

  • Vicetti Miguel RD, Cherpes TL, Watson LJ, McKenna KC (2010) CTL induction of tumoricidal nitric oxide production by intratumoral macrophages is critical for tumor elimination. J Immunol 185:6706–6718

    Article  PubMed  CAS  Google Scholar 

  • Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-fluoroacil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  PubMed  CAS  Google Scholar 

  • Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY et al (2010) Notch signalling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70:4840–4849

    Article  PubMed  CAS  Google Scholar 

  • Webster JA, Beck AH, Sharma M, Espinosa I, Weigelt B, Schreuder M et al (2010) Variations in stromal signatures in breast and colorectal cancer metastases. J Pathol 222:158–165

    Article  PubMed  CAS  Google Scholar 

  • Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C et al (2009) Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int J Cancer 125:2114–2121

    Article  PubMed  CAS  Google Scholar 

  • Weiser-Evans MCM, Wang X-Q, Amin J, Van Putten V, Choudhary R, Winn RA et al (2009) Depletion of cytosolic phospholipase A2 in bone marrow-derived macrophages protects against lung cancer progression and metastasis. Cancer Res 69:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Welford AF, Biziato D, Coffelt SB, Nucera S, Fisher M, Pucci F et al (2011) TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Werno C, Menrad H, Weigert A, Dehne N, Goerdt S, Schledzewski K et al (2010) Knockout of HIF-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31:1863–1872

    Article  PubMed  CAS  Google Scholar 

  • Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662–6667

    Article  PubMed  CAS  Google Scholar 

  • Wong S-C, Puaux A-L, Chittezath M, Shalova I, Kajiji TS, Wang X et al (2010) Macrophage polarization to a unique phenotype driven by B cells. Eur J Immunol 40:2296–2307

    Article  PubMed  CAS  Google Scholar 

  • Wu Q-L, Buhtoiarov IN, Sondel PM, Rakhmilevich AL, Ranheim EA (2009) Tumoricidal effects of activated macrophages in a mouse model of chronic lymphocytic leukemia. J Immunol 182:6771–6778

    Article  PubMed  CAS  Google Scholar 

  • Wyckoff JB, Wang Y, Lin EY, Li J-F, Goswami S, Stanley ER et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656

    Article  PubMed  CAS  Google Scholar 

  • Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J et al (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  • Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A et al (2010) Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70:6139–6149

    Article  PubMed  CAS  Google Scholar 

  • Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al (2008) Abrogation of TGF signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Chen J, Su F, Yu B, Su F, Lin L et al (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  PubMed  CAS  Google Scholar 

  • Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007a) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L et al (2007b) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178:6867–6875

    PubMed  CAS  Google Scholar 

  • Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R et al (2010) An Ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 70:1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Zeelenberg IS, Ostrowski M, Krumeich S, Bobrie A, Jancic C, Boissonnas A et al (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res 68:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Zhang HG, Grizzle WE (2011) Exosomes and cancer: a newly described pathway of immune suppression. Clin Cancer Res 17:959–964

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT et al (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124:587–599

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chen L, Xiao M, Wang C, Xin Z (2011) FSP1(+) fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation. Am J Pathol 178:382–390

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo A. Van Ginderachter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Ginderachter, J.A. (2013). Macrophage Differentiation and Activation States in the Tumor Microenvironment. In: Shurin, M., Umansky, V., Malyguine, A. (eds) The Tumor Immunoenvironment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6217-6_17

Download citation

Publish with us

Policies and ethics