Skip to main content

The Warburg Effect Is a Guide to Multipurpose Cancer Therapy Including Trace Element Delivery

  • Chapter
  • First Online:
Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment

Abstract

The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the main energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about “the prime cause of cancer”, which is a matter of debate till nowadays. On the contrary to the hypothesis, his discovery was completely recognized. However, the discovery had been almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is important for the prevention and diagnosis, and yet the effects that influence on tumor growth are more important for cancer treatment. As a consequence of the Warburg effect, the recovery of the oxygen respiration of cancer cells can inhibit the tumor growth and lead to a remission. Here, we review the current knowledge of the inhibition of abnormal glycolysis and normalization of oxygen respiration of malignant tumor and a potential role of ultra trace element germanium in this process. Efficiency of different Ge-delivery molecules is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O, Posener K, Negelein E (1924) Metabolism of carcinoma cells. Biochem Z 152:309–344

    CAS  Google Scholar 

  2. Warburg O (1930) On metabolism of tumors. Constable, London

    Google Scholar 

  3. Warburg O (1931) The metabolism of tumours. Richard R Smith Inc., New York

    Google Scholar 

  4. Warburg OH (1931) Nobel prize in medicine. http://nobelprize.org/nobel_prizes/medicine/laureates/1931/warburg-bio.html. Accessed 10 Jan 2013

  5. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  6. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  PubMed  CAS  Google Scholar 

  7. Warburg O (2010) The classic: the chemical constitution of respiration ferment. Clin Orthop Relat Res 468:2833–2839

    Article  PubMed  Google Scholar 

  8. Warburg OH (1969) The prime cause and prevention of cancer. http://healingtools.tripod.com/primecause1.html/. Accessed 10 Jan 2013

  9. Krebs HA (1972) Otto Heinrich Warburg, 1883–1970. Biogr Mem Fellows R Soc 18:629–699

    Article  PubMed  CAS  Google Scholar 

  10. Bertram JS (2000) The molecular biology of cancer. Mol Asp Med 21:167–223

    Article  CAS  Google Scholar 

  11. Grandér D (1998) How do mutated oncogenes and tumor suppressor genes cause cancer? Med Oncol 15:20–26

    Article  PubMed  Google Scholar 

  12. Croce CM (2008) Oncogenes and cancer. N Engl J Med 358:502–511

    Article  PubMed  CAS  Google Scholar 

  13. Vazquez A, Liu J, Zhou Y, Oltvai ZN (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited. BMC Syst Biol 4:1–9

    Article  CAS  Google Scholar 

  14. Schulz TJ, Thierbach R, Voigt A, Drewes G, Mietzner B, Steinberg P, Pfeiffer AF, Ristow M (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem 281:977–981

    Article  PubMed  CAS  Google Scholar 

  15. Pedersen P (2007) Warburg, Me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222

    Article  PubMed  CAS  Google Scholar 

  16. Michelakis ED (2008) Mitochondrial medicine: a new era in medicine opens new windows and brings new challenges. Circulation 117:2431–2434

    Article  PubMed  Google Scholar 

  17. Kiebish MA, Han X, Cheng H, Chuang JH, Seyfried TN (2008) Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J Lipid Res 49:2545–2556

    Article  PubMed  CAS  Google Scholar 

  18. Miles KA, Williams RE (2008) Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 8:81–86

    Article  PubMed  CAS  Google Scholar 

  19. Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96:1805–1806

    Article  PubMed  Google Scholar 

  20. Kritikou E (2008) Cancer biology: Warburg effect revisited. Nat Rev Mol Cell Biol 9:264

    Article  CAS  Google Scholar 

  21. Racker E, Spector M (1981) Warburg effect revisited: merger of biochemistry and molecular biology. Science 213:303–307

    Article  PubMed  CAS  Google Scholar 

  22. Racker E (1981) Warburg effect revisited. Science 213:1313

    Article  PubMed  CAS  Google Scholar 

  23. Liu X, Wang X, Zhang J, Lam EK, Shin VY, Cheng AS, Yu J, Chan FK, Sung JJ, Jin HC (2010) Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis. Oncogene 29:442–450

    Article  PubMed  CAS  Google Scholar 

  24. Langbein S, Zerilli M, Zur Hausen A, Staiger W, Rensch-Boschert K, Lukan N, Popa J, Ternullo MP, Steidler A, Weiss C, Grobholz R, Willeke F, Alken P, Stassi G, Schubert P, Coy JF (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94:578–585

    Article  PubMed  CAS  Google Scholar 

  25. Ristow M, Cuezva JM (2009) Oxidative phosphorylation and cancer: the ongoing Warburg hypothesis. In: Apte SP, Sarangarajan R (eds) Cellular respiration and carcinogenesis. Humana Press, New York

    Google Scholar 

  26. Czarnecka AM, Czarnecki JS, Kukwa W, Cappello F, Scińska A, Kukwa A (2010) Molecular oncology focus—is carcinogenesis a ‘mitochondriopathy’? J Biomed Sci 17:31

    Article  PubMed  CAS  Google Scholar 

  27. Shanmugam M, McBrayer SK, Rosen ST (2009) Targeting the Warburg effect in hematological malignancies: from PET to therapy. Curr Opin Oncol 21:531–536

    Article  PubMed  Google Scholar 

  28. Singh K, Costello L (2009) Mitochondria and cancer. Springer Science, New York

    Google Scholar 

  29. Chance (2005) Was Warburg right? Or was it that simple? Cancer Biol Ther 4:125–126

    Article  PubMed  Google Scholar 

  30. Scatena R, Bottoni P, Pontoglio A, Giardina B (2010) Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy. Proteomics Clin Appl 4:143–158

    Article  PubMed  CAS  Google Scholar 

  31. Pauwels EK, Sturm EJ, Bombardieri E, Cleton FJ, Stokkel MP (2000) Positron-emission tomography with [18F]fluorodeoxyglucose. J Cancer Res Clin Oncol 126:549–559

    Article  PubMed  CAS  Google Scholar 

  32. Weljie AM, Jirik FR (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int J Biochem Cell Biol 43:981–989

    Article  PubMed  CAS  Google Scholar 

  33. Goldblatt H, Cameron G (1953) Induced malignancy in cells from rat myocardium subjected to intermittent anaerobiosis during long propagation in vitro. J Exp Med 97:525–552

    Article  PubMed  CAS  Google Scholar 

  34. Dhup S, Dadhich RK, Porporato PE, Sonveaux P (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm 18:1319–1330

    CAS  Google Scholar 

  35. Solzhenitsyn A (1969) Cancer ward. Farrar, Straus and Giroux, New York

    Google Scholar 

  36. Voet D, Voet JG (2004) Biochemistry, 3rd edn. Wiley, Hoboken

    Google Scholar 

  37. Kim JW, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66:8927–8930

    Article  PubMed  CAS  Google Scholar 

  38. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  PubMed  CAS  Google Scholar 

  39. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767

    Article  PubMed  CAS  Google Scholar 

  40. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–482

    Article  PubMed  CAS  Google Scholar 

  41. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  PubMed  CAS  Google Scholar 

  42. Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277

    Article  PubMed  CAS  Google Scholar 

  43. Porporato PE, Dadhich RK, Dhup S, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2:49

    Article  PubMed  Google Scholar 

  44. Lu W, Huang P (2010) Glycolytic pathway as a target for tumor inhibition. In: Bagley RG (ed) The tumor microenvironment. Springer, New York

    Google Scholar 

  45. Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B (2008) Glycolytic enzyme inhibitors in cancer treatment. Expert Opin Investig Drugs 17:1533–1545

    Article  PubMed  CAS  Google Scholar 

  46. Israel M, Schwartz L (2011) On the metabolic origin of cancer: substances that target tumor metabolism. Biomed Res 22:132–166

    Google Scholar 

  47. Israel M, Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer 10:70

    Article  PubMed  CAS  Google Scholar 

  48. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  PubMed  CAS  Google Scholar 

  49. Miller T, Isenberg J, Roberts D (2009) Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 109:3099–3124

    Article  PubMed  CAS  Google Scholar 

  50. Senderowicz AM (2003) Cell cycle modulators for the treatment of lung malignancies. Clin Lung Cancer 5:158–168

    Article  PubMed  CAS  Google Scholar 

  51. Zerbini LF, Czibere A, Wang Y, Correa RG, Otu H, Joseph M, Takayasu Y, Silver M, Gu X, Ruchusatsawat K, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA (2006) A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res 66:11922–11931

    Article  PubMed  CAS  Google Scholar 

  52. Sattler UG, Hirschhaeuser F, Mueller-Klieser WF (2010) Manipulation of glycolysis in malignant tumors: fantasy or therapy? Curr Med Chem 17:96–108

    Article  PubMed  CAS  Google Scholar 

  53. Dawson RMC, Elliot DC, Elliot WH, Jones KM (1986) Data for biochemical research. Oxford Science Publications, Oxford & New York

    Google Scholar 

  54. Schwartz MK (1975) Role of trace elements in cancer. Cancer Res 35:3481–3487

    PubMed  CAS  Google Scholar 

  55. Gregoriadis GC, Apostolidis NS, Romanos AN, Paradellis TP (1983) A comparative study of trace elements in normal and cancerous colorectal tissues. Cancer 52:508–519

    Article  PubMed  CAS  Google Scholar 

  56. Drake EN II, Sky-Peck HH (1989) Discriminant analysis of trace element distribution in normal and malignant human tissues. Cancer Res 49:4210–4215

    PubMed  CAS  Google Scholar 

  57. Zaichick V, Tsyb A, Vtyurin B (1995) Trace elements and thyroid cancer. Analyst 120:817–821

    Article  PubMed  CAS  Google Scholar 

  58. Carvalho ML, Magalhães T, Becker M, von Bohlen A (2007) Trace elements in human cancerous and healthy tissues: a comparative study by EDXRF, TXRF, synchrotron radiation and PIXE. Spectrochim Acta B 62:1004–1011

    Article  CAS  Google Scholar 

  59. Piacenti da Silva M, Zucchi OLAD, Ribeiro-Silva A, Poletti ME (2009) Discriminant analysis of trace elements in normal, benign and malignant breast tissues measured by total reflection X-ray fluorescence. Spectrochim Acta B 64:587–592

    Article  CAS  Google Scholar 

  60. Cobanoglu U, Demir H, Sayir F, Duran M, Mergan D (2010) Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pac J Cancer Prev 11:1383–1388

    PubMed  Google Scholar 

  61. Orlova M, Orlov A (2011) Role of zinc in an organism and its influence on processes leading to apoptosis. Br J Med Med Res 1:239–305

    Google Scholar 

  62. Fields ALA, Wolman SL, Halperin ML (1981) Chronic lactic acidosis in a patient with cancer: therapy and metabolic consequences. Cancer 47:2026–2029

    Article  PubMed  CAS  Google Scholar 

  63. Chen JL, Merl D, Peterson CW, Wu J, Liu PY, Yin H, Muoio DM, Ayer DE, West M, Chi JT (2010) Lactic acidosis triggers starvation response with paradoxical induction of TXNIP through MondoA. PLoS Genet 6:e1001093

    Article  PubMed  CAS  Google Scholar 

  64. Parks SK, Chiche J, Pouyssegur J (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226:299–308

    Article  PubMed  CAS  Google Scholar 

  65. Silva AS, Yunes JA, Gillies RJ, Gatenby RA (2009) The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res 69:2677–2684

    Article  PubMed  CAS  Google Scholar 

  66. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA, Gillies RJ (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69:2260–2268

    Article  PubMed  CAS  Google Scholar 

  67. Forsythe SM, Schmidt GA (2000) Sodium bicarbonate for the treatment of lactic acidosis. Chest 117:260–267

    Article  PubMed  CAS  Google Scholar 

  68. Takigawa S, Sugano N, Ochiai K, Arai N, Ota N, Ito K (2008) Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro. J Oral Sci 50:413–417

    Article  PubMed  CAS  Google Scholar 

  69. Cuhaci B, Lee J, Ahmed Z (2000) Sodium bicarbonate controversy in lactic acidosis. Chest 118:882–884

    Article  PubMed  CAS  Google Scholar 

  70. McCarty MF, Whitaker J (2010) Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev 15:264–272

    PubMed  Google Scholar 

  71. Fais S (2010) Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. J Intern Med 267:515–525

    Article  PubMed  CAS  Google Scholar 

  72. Spugnini EP, Citro G, Fais S (2010) Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy. J Exp Clin Cancer Res 29:1–5

    Article  CAS  Google Scholar 

  73. Tani T, Hanasawa K, Endo Y, Yoshioka T, Kodama M, Kaneko M, Uchiyama Y, Akizawa T, Takahasi K, Sugai K (1998) Therapeutic apheresis for septic patients with organ dysfunction: hemoperfusion using a polymyxin B immobilized column. Artif Organs 22:1038–1044

    Article  PubMed  CAS  Google Scholar 

  74. Nikolaev VG, Sakhno LA, Snezhkova EA, Sarnatskaya VV, Yushko LA (2011) Carbon adsorbents in oncology: achievements and perspectives. Exp Oncol 33:2–8

    PubMed  CAS  Google Scholar 

  75. Chan FH, Carl D, Lyckholm LJ (2009) Severe lactic acidosis in a patient with B-cell lymphoma: a case report and review of the literature. Case Report Med 2009:534561

    Google Scholar 

  76. Goodman S (1988) Therapeutic effects of organic germanium. Med Hypotheses 26:207–215

    Article  PubMed  CAS  Google Scholar 

  77. Levine SA (1987) Organic germanium. A novel dramatic immunostimulant. J Orthomol Med 2:83–87

    Google Scholar 

  78. Asai K (1980) The miracle cure: organic germanium. Japan Publications, New York

    Google Scholar 

  79. Unakar NJ, Tsui J, Johnson M (1997) Effect of pretreatment of germanium-132 on Na(+)-K(+)-ATPase and galactose cataracts. Curr Eye Res 16:832–837

    Article  PubMed  CAS  Google Scholar 

  80. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH (2003) Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 473:1–7

    Article  PubMed  CAS  Google Scholar 

  81. Marczynski B (1988) Carcinogenesis as the result of the deficiency of some essential trace elements. Med Hypotheses 26:239–249

    Article  PubMed  CAS  Google Scholar 

  82. McMahon M, Regan F, Hughes H (2006) The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy. Food Chem 97:411–417

    Article  CAS  Google Scholar 

  83. Ohri LK, Vicari SM, Malone PM (1993) Germanium use and associated adverse effects: a review. J Pharm Technol 9:237–241

    Google Scholar 

  84. Zhen Y, Gu X, He S, Wang L (1993) Determination of Germanium in lucid ganoderma and ginseng by GFASS. Chin J Modern Appl Pharm 10:11–12

    Google Scholar 

  85. Avula B, Wang YH, Smillie TJ, Duzgoren-Aydin NS, Khan IA (2010) Quantitative determination of multiple elements in botanicals and dietary supplements using ICP-MS. J Agric Food Chem 58:8887–8894

    Article  CAS  Google Scholar 

  86. Rosenberg E (2009) Germanium: environmental occurrence, importance and speciation. Rev Environ Sci Bio/Technol 8:29–57

    Article  CAS  Google Scholar 

  87. Yang LL, Zhang DQ (2002) Direct determination of germanium in botanical samples by graphite furnace atomic absorption spectrometry with palladium–zirconium as chemical modifier. Talanta 56:1123–1129

    Article  PubMed  CAS  Google Scholar 

  88. Jamison JR (2003) Ginseng leutherococcus senticosus and panax ginseng. In: Jamison JR (ed) Clinical guide to nutrition & dietary supplements in disease management. Churchill Livingstone, London

    Google Scholar 

  89. Pham PTK, Primack A (2003) Cancer. In: Spencer JW, Jacobs JJ (eds) Complementary and alternative medicine: an evidence-based approach, 2nd edn. Mosby, Saint Louis

    Google Scholar 

  90. Najm WI (2009) Cáncer de pulmón. In: Rakel D (ed) Medicina integrativa. Elsevier, Espana

    Google Scholar 

  91. Ishiwara F (1928) The influence of different types of metals on mouse carcinoma. Ber Gesamte Physiol Exp Pharmakol 49:615

    CAS  Google Scholar 

  92. Rothermundt M, Burschkies K (1936) Germanium in chemotherapy. Z Immunitätsforsch Exp Ther 87:445–448

    CAS  Google Scholar 

  93. Kanisawa M, Schroeder HA (1967) Life-term studies on the effects of arsenic, germanium, tin, and vanadium on spontaneous tumors in mice. Cancer Res 27A:1192–1195

    CAS  Google Scholar 

  94. Atassi G (1985) Antitumor and toxic effects of silicon, germanium, tin and lead compounds. Rev Silicon, Germanium, Tin Lead Compd 8:219–235

    CAS  Google Scholar 

  95. Ward SG, Taylor RC (1988) Antitumor activity of the main-group metallic elements: aluminum, gallium, indium, thallium, germanium, antimony, and bismuth. In: Gielen M (ed) Metal-based antitumor drugs, vol 1. Freund Publ. House Ltd., London

    Google Scholar 

  96. Kolesnikov SP (1966) Research in chemistry of trihalogermans and germanium analogues of dihalocarbenes. Thesis. ND Zelinsky Institute of Organic Chemistry, Academy of Sciences of USSR (in Russian)

    Google Scholar 

  97. Kolesnikov SP, Nefedov OM (1967) About interaction trichlorogermane with ketones (for the posts, TK Gar and VF Mironov). Zh Obshch Khim 37:746, English transl

    CAS  Google Scholar 

  98. Mironov VF, Berliner EM, Gar TK (1967) Reactions of trichlorogermane with acrylic acid and its derivatives. Zh Obshch Khim 37:911–912, English transl

    Google Scholar 

  99. Mainwaring MG, Poor C, Zander DS, Harman E (2000) Complete remission of pulmonary spindle cell carcinoma after treatment with oral germanium sesquioxide. Chest 117:591–593

    Article  PubMed  CAS  Google Scholar 

  100. Ishikawa M, Ozaki M, Sekimoto R, Takayanagi Y, Sasaki K (1993) Germanium sesquioxide, a biological response modifier, counteracts toxic but not antineoplastic effects of cis-diamminedichloroplatinum(II) in mice. Oyo Yakuri 46:1–8

    CAS  Google Scholar 

  101. Chase TA, Cupp MJ, Tracy TS (2003) Germanium. In: Cupp MJ, Tracy TS (eds) Dietary supplements. Toxicology and clinical pharmacology. Humana Press, Totowa

    Google Scholar 

  102. Baselt RC (2008) Disposition of toxic drugs and chemicals in man, 8th edn. Biomedical Publications, Foster City

    Google Scholar 

  103. Gerber GB, Leonard A (1997) Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutat Res 387:141–146

    Article  PubMed  CAS  Google Scholar 

  104. Kaplan BJ, Parish WW, Andrus GM, Simpson JSA, Field CJ (2004) Germane facts about germanium sesquioxide: I. Chemistry and anticancer properties. J Altern Complement Med 10:337–344

    Article  PubMed  Google Scholar 

  105. Kaplan BJ, Andrus GM, Parish WW (2004) Germane facts about germanium sesquioxide: II. Scientific error and misrepresentation. J Altern Complement Med 10:345–348

    Article  PubMed  Google Scholar 

  106. Schauss A (1991) Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. Biol Trace Elem Res 29:267–280

    Article  PubMed  CAS  Google Scholar 

  107. Tao SH, Bolger PM (1997) Hazard assessment of germanium supplements. Regul Toxicol Pharmacol 25:211–219

    Article  PubMed  CAS  Google Scholar 

  108. Krapf R, Schaffner T, Iten PX (1992) Abuse of germanium associated with fatal lactic acidosis. Nephron 62:351–356

    Article  PubMed  CAS  Google Scholar 

  109. Raisin J, Hess B, Blatter M, Zimmermann A, Descoeudres C, Horber FF, Jaeger P (1992) Toxicity of an organic germanium compound: deleterious consequences of a “natural remedy”. Schweiz Med Wochenschr 8:11–13

    Google Scholar 

  110. Takeuchi A, Yoshizawa N, Oshima S, Kubota T, Oshikawa Y, Akashi Y, Oda T, Niwa H, Imazeki N, Seno A, Fuse Y (1992) Nephrotoxicity of germanium compounds: report of a case and review of the literature. Nephron 60:436–442

    Article  PubMed  CAS  Google Scholar 

  111. Patai S (1995) The chemistry of organic germanium, tin, and lead compounds, vol 1. Wiley, Chichester

    Book  Google Scholar 

  112. Thayer JS (1987) Germapharmaca: some recent studies on biologically active organogermanium compounds. Appl Organomet Chem 1:227–234

    Article  CAS  Google Scholar 

  113. Ignatenko MA (1987) Antitumor activity of organosilicon and organogermanium compounds (a review). Chim Farmacol Zh 21:402–408

    CAS  Google Scholar 

  114. Lukevics E, Gar TK, Ignatovich LM, Mironov VF (1990) Biological activity of Germanium compounds (in Russian). Zinatne, Riga

    Google Scholar 

  115. Rappoport Z (2002) The chemistry of organic germanium, tin and lead compounds, vol 2. Wiley, Chichester

    Book  Google Scholar 

  116. Lukevics E, Ignatovich L (2005) Biological activity of organogermanium compounds. In: Gielen M, Tiekink ER (eds) Metallotherapeutic drugs and metal-based diagnostic agents. The use of metals in medicine. Wiley, Chichester

    Google Scholar 

  117. Menchikov LG, Ignatenko MA (2012) Biological activity of organogermanium compounds (a review). Chim Farmacol Zh 46(11):3–7 (in Russian)

    Google Scholar 

  118. Lukevics EA, Germane SK, Zidemane AA, Dauvarte AK, Kravchenko IM, Trushule MA, Mironov VF, Gar TK, Khromanova NY, Viktorov NA, Shiryaev VI (1984) Synthesis and neurotropic and antineoplastic activity of a number of germatranes and germasesquioxanes and their organotin analogs. Pharm Chem J 18:89–94

    Article  Google Scholar 

  119. Mironov VF, Chernyshev AE, Malochkin VV, Martynov AI, Kulikov GA (1998) Compound stimulating during experiment synthesis of immunoglobulins. RU patent 2108096

    Google Scholar 

  120. Shcherbinin VV, Chernyshev AE (1997) Method of decrease of toxicity of medicinal agents, metals, organic and inorganic compounds and other toxins. RU patent 2104033

    Google Scholar 

  121. Shcherbinin VV, Chernyshev AE (1997) Method of potentiation of medicinal agent curative effect. RU patent 2104032

    Google Scholar 

  122. Kluska M (2008) Some aspects of the analysis of biologically active organogermanium substances. Crit Rev Anal Chem 38:84–92

    Article  CAS  Google Scholar 

  123. Akiba M, Kakimoto N (1994) Synthesis and properties of poly[3,3′-(1,3-dioxo-1,3-digermoxanediyl)bispropanoic acid](Ge-132) and related compounds as bioactive organogermanium compound. Nippon Kagaku Kaishi 3:286–300

    Article  Google Scholar 

  124. Kuwabara M, Ohba S, Yukawa M (2002) Effect of germanium, poly-trans-[2-carboxyethyl] germasesquioxane on natural killer (NK) activity in dogs. J Vet Med Sci 64:719–721

    Article  PubMed  CAS  Google Scholar 

  125. Suzuki F (1985) Antitumor activity of Ge-132, a new organogermanium compound, in mice is expressed through the functions of macrophages and T lymphocytes. Gan To Kagaku Ryoho 12:1445–1452

    PubMed  CAS  Google Scholar 

  126. Suzuki F, Brutkiewicz RR, Pollard RB (1985) Ability of sera from mice treated with Ge-132, an inorganic germanium compound, to inhibit experimental murine ascites tumor. Br J Cancer 52:757–763

    Article  PubMed  CAS  Google Scholar 

  127. Emerson PM, Wilkinson JH (1965) Urea and oxalate inhibition of the serum lactate dehydrogenase. J Clin Pathol 18:803–807

    Article  PubMed  CAS  Google Scholar 

  128. Yamamoto S (1983) H4-isozyme of lactate dehydrogenase in the solution of sodium chloride-4. Inhibition by oxalate and oxamate. Int J Biochem 15:355–360

    Article  CAS  Google Scholar 

  129. Cheshire RM, Park MV (1971) Inhibition by salicylate of porcine lactate dehydrogenase isoenzyme 5. Biochem J 125:45P

    PubMed  CAS  Google Scholar 

  130. Schoenenberger GA, Wacker WE (1966) Peptide inhibitors of lactic dehydrogenase (LDH). II. Isolation and characterization of peptides I and II. Biochemistry 5:1375–1379

    Article  PubMed  CAS  Google Scholar 

  131. Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, Leung GP, Yu PH, Chan SW (2011) A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19:245–254

    Article  PubMed  CAS  Google Scholar 

  132. Zheng W, Miao K, Liu Y, Zhao Y, Zhang M, Pan S, Dai Y (2010) Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl Microbiol Biotechnol 87:1237–1254

    Article  PubMed  CAS  Google Scholar 

  133. Sudheesh N, Ajith T, Janardhanan K (2009) Ganoderma lucidum (Fr.) P. Karst enhances activities of heart mitochondrial enzymes and respiratory chain complexes in the aged rat. Biogerontology 10:627–636

    Article  PubMed  CAS  Google Scholar 

  134. Sheena N, Lakshmi B, Janardhanan KK (2005) Therapeutic potential of Ganoderma lucidum (Fr.) P. Karst. Nat Prod Rad 4:382–386

    Google Scholar 

  135. Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000) The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 11:565–576

    Article  PubMed  CAS  Google Scholar 

  136. Surjushe A, Vasani R, Saple DG (2008) Aloe vera: a short review. Indian J Dermatol 53:163–166

    Article  PubMed  Google Scholar 

  137. Vogler B, Ernst E (1999) Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 49:823–828

    PubMed  CAS  Google Scholar 

  138. Abdullah TH, Kandil O, Elkadi A, Carter J (1988) Garlic revisited: therapeutic for the major diseases of our times? J Natl Med Assoc 80:439–445

    PubMed  CAS  Google Scholar 

  139. Milner JA (2001) A historical perspective on garlic and cancer. J Nutr 131:1027S–1031S

    PubMed  CAS  Google Scholar 

  140. Kim JY, Kwon O (2009) Garlic intake and cancer risk: an analysis using the Food and Drug Administration’s evidence-based review system for the scientific evaluation of health claims. Am J Clin Nutr 89:257–264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part (AVP) by Grant #IRG-78-002-31 from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anatoliy V. Popov or Leonid G. Menchikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Popov, A.V., Menchikov, L.G. (2013). The Warburg Effect Is a Guide to Multipurpose Cancer Therapy Including Trace Element Delivery. In: Coelho, J. (eds) Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. Advances in Predictive, Preventive and Personalised Medicine, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6010-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6010-3_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6009-7

  • Online ISBN: 978-94-007-6010-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics