Skip to main content

Motile Cilia and Brain Function: Ependymal Motile Cilia Development, Organization, Function and Their Associated Pathologies

  • Chapter
  • First Online:
Cilia and Nervous System Development and Function

Abstract

Unlike immotile cilia, which protrude from most cells in our body, motile cilia are restricted to sperm cells and epithelial cells lining the airways, the oviduct, the paranasal sinuses, and the brain ventricles. The best-known function of these cilia is that their coordinated beating generates extracellular flow that clears mucus from the airways, moves ova from the oviducts toward the uterus, and propels cerebrospinal fluid (CSF) through the cerebral ventricles. The vertebrate brain forms around a ventricular cavity in which the CSF, secreted by the choroid plexus in each ventricle, flows continuously. The CSF, which contains many growth factors and morphogens, is present from the first stages of brain development and plays crucial roles throughout life. Ependymal cells are specialized glial cells that extend multiple motile cilia into the cerebral ventricles. These cells appear at early postnatal stages and line all cerebral ventricles in adult mammals. In this chapter, we will review current knowledge on ependymal motile cilia development, organization, functions, and their associated pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfaro-Cervello C, Soriano-Navarro M, Mirzadeh Z et al (2012) Biciliated ependymal cell proliferation contributes to spinal cord growth. J Comp Neurol. doi:10.1002/cne.23104 (ahead of publication)

  • Arai Y, Deguchi K, Takashima S (1998) Vascular endothelial growth factor in brains with periventricular leukomalacia. Pediatr Neurol 19:45–49

    Article  PubMed  CAS  Google Scholar 

  • Baas D, Meiniel A, Benadiba C et al (2006) A deficiency in RFX3 causes hydrocephalus associated with abnormal differentiation of ependymal cells. Eur J Neurosci 24:1020–1030. doi:10.1111/j.1460-9568.2006.05002.x

    Article  PubMed  CAS  Google Scholar 

  • Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–5339

    Article  PubMed  CAS  Google Scholar 

  • Bering EA Jr (1955) Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 73(2):165–172

    Article  PubMed  Google Scholar 

  • Bonnafe E, Touka M, AitLounis A et al (2004) The transcription factor RFX3 directs nodal cilium development and left-right asymmetry specification. Mol Cell Biol 24:4417–4427. doi:10.1128/MCB.24.10.4417-4427.2004

    Article  PubMed  CAS  Google Scholar 

  • Bradley WJ, Kortman K, Burgoyne B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159(3):611–616

    PubMed  Google Scholar 

  • Brody SL, Yan XH, Wuerffel MK et al (2000) Ciliogenesis and left-right axis defects in forkhead factor HFH-4-null mice. Am J Respir Cell Mol Biol 23:45–51

    PubMed  CAS  Google Scholar 

  • Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41:2–13. doi:10.1002/(SICI)1097-0029(19980401)41:1<2::AID-JEMT2>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Bruni JE, Del Bigio MR, Clattenburg R (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356(1):1–19

    PubMed  CAS  Google Scholar 

  • Calvo CF, Fontaine RH, Soueid J et al (2011) Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 25:831–844. doi:10.1101/gad.615311

    Article  PubMed  CAS  Google Scholar 

  • Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875

    Article  PubMed  Google Scholar 

  • Cathcart RS 3rd, Worthington WC Jr (1964) Ciliary movement in the rat cerebral ventricles: clearing action and directions of currents. J Neuropathol Exp Neurol 23:609–618

    Article  PubMed  Google Scholar 

  • Danilov AI, Gomes-Leal W, Ahlenius H et al (2009) Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57:136–152. doi:10.1002/glia.20741

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73. doi:10.1007/s00401-009-0624-y

    Article  PubMed  Google Scholar 

  • Dirksen ER (1971) Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J Cell Biol 51:286–302

    Article  PubMed  CAS  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  • Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  • Dubruille R, Laurençon A, Vandaele C et al (2002) Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129:5487–5498. doi:10.1242/dev.00148

    Article  PubMed  CAS  Google Scholar 

  • Ferri AL, Cavallaro M, Braida D et al (2004) Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131:3805–3819. doi:10.1242/dev.01204

    Article  PubMed  CAS  Google Scholar 

  • Genzen JR, Yang D, Ravid K, Bordey A (2009) Activation of adenosine A2B receptors enhances ciliary beat frequency in mouse lateral ventricle ependymal cells. Cerebrospinal Fluid Res 6:15. doi:10.1186/1743-8454-6-15

    Article  PubMed  Google Scholar 

  • Guirao B, Joanny JF (2007) Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys J 92:1900–1917. doi:10.1529/biophysj.106.084897

    Article  PubMed  CAS  Google Scholar 

  • Guirao B, Meunier A, Mortaud S et al (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12:341–350. doi:10.1038/ncb2040

    Article  PubMed  CAS  Google Scholar 

  • Hamilton LK, Truong MKV, Bednarczyk MR et al (2009) Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164:1044–1056. doi:10.1016/j.neuroscience.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  • Harandi M, Didier M, Aguera M et al (1986) GABA and serotonin (5-HT) pattern in the supraependymal fibers of the rat epithalamus: combined radioautographic and immunocytochemical studies. Effect of 5-HT content on [3] GABA accumulation. Brain Res 370(2):241–249

    Article  PubMed  CAS  Google Scholar 

  • Hayamizu TF, Chan PT, Johanson CE (2001) FGF-2 immunoreactivity in adult rat ependyma and choroid plexus: responses to global forebrain ischemia and intraventricular FGF-2. Neurol Res 23:353–358

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Meunier A, Huang S et al (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137:3037–3046. doi:10.1242/dev.050120

    Article  PubMed  CAS  Google Scholar 

  • Hu H (1999) Chemorepulsion of neuronal migration by Slit2 in the developing mammalian forebrain. Neuron 23:703–711

    Article  PubMed  CAS  Google Scholar 

  • Ibanez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12(Spec No 1):R27–R35

    Article  PubMed  CAS  Google Scholar 

  • Ibanez-Tallon I, Pagenstecher A, Fliegauf M et al (2004) Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Jacquet BV, Salinas-Mondragon R, Liang H et al (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136:4021–4031. doi:10.1242/dev.041129

    Article  PubMed  CAS  Google Scholar 

  • Kunimoto K, Yamazaki Y, Nishida T et al (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148:189–200. doi:10.1016/j.cell.2011.10.052

    Article  PubMed  CAS  Google Scholar 

  • Lavado A, Oliver G (2011) Six3 is required for ependymal cell maturation. Development 138:5291–5300. doi:10.1242/dev.067470

    Article  PubMed  CAS  Google Scholar 

  • Lechtreck KF, Delmotte P, Robinson ML et al (2008) Mutations in Hydin impair ciliary motility in mice. J Cell Biol 180:633–643. doi:10.1083/jcb.200710162

    Article  PubMed  CAS  Google Scholar 

  • Lim DA, Tramontin AD, Trevejo JM et al (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  PubMed  CAS  Google Scholar 

  • Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057

    Article  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278. doi:10.1016/j.stem.2008.07.004

    Article  PubMed  CAS  Google Scholar 

  • Mirzadeh Z, Han YG, Soriano-Navarro M et al (2010) Cilia organize ependymal planar polarity. J Neurosci 30:2600–2610. doi:10.1523/JNEUROSCI.3744-09.2010

    Article  PubMed  CAS  Google Scholar 

  • Mitchell B, Jacobs R, Li J et al (2007) A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447:97–101

    Article  PubMed  CAS  Google Scholar 

  • Miyan JA, Nabiyouni M, Zendah M (2003) Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 81:317–328. doi:10.1139/y03-027

    Article  PubMed  CAS  Google Scholar 

  • Narita K, Kawate T, Kakinuma N, Takeda S (2010) Multiple primary cilia modulate the fluid transcytosis in choroid plexus epithelium. Traffic 11:287–301. doi:10.1111/j.1600-0854.2009.01016.x

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Chin WC, O’Brien JA et al (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531:131–140

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Ba-Charvet KT (2004) Multiple roles for slits in the control of cell migration in the rostral migratory stream. J Neurosci 24:1497–1506. doi:10.1523/JNEUROSCI.4729-03.2004

    Article  PubMed  CAS  Google Scholar 

  • Paez-Gonzalez P et al (2011) Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71:61–75. doi:10.1016/j.neuron.2011.05.029

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1968) Subcommissural organ and adjacent ependyma: autoradiographic study of their origin in the mouse brain. Am J Anat 122:317–335. doi:10.1002/aja.1001220210

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR, Noone DF, O’Dowd BS (1996) Ependymocytes and supra-ependymal axons in rat brain contain glutamate. Glia 17:345–348. doi:10.1002/(SICI)1098-1136(199608)17:4<345::AID-GLIA9>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez EM, Blázquez JL, Pastor FE et al (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164. doi:10.1016/S0074-7696(05)47003-5

    Article  PubMed  Google Scholar 

  • Roth Y, Kimhi Y, Edery H, Aharonson E (1985) Ciliary motility in brain ventricular system and trachea of hamsters. Brain Res 330(2):291–297

    Article  PubMed  CAS  Google Scholar 

  • Sabourin J-C, Ackema KB, Ohayon D et al (2009) A mesenchymal-like ZEB1  +  niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord. Stem Cells 27:2722–2733. doi:10.1002/stem.226

    Article  PubMed  CAS  Google Scholar 

  • Salathe M (2007) Regulation of mammalian ciliary beating. Annu Rev Physiol 69:401–422. doi:10.1146/annurev.physiol.69.040705.141253

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ, Sleigh MA (1981) Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J Cell Sci 47:331–347

    PubMed  CAS  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O et al (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311:629–632

    Article  PubMed  CAS  Google Scholar 

  • Schutzer SE, Liu T, Natelson BH et al (2010) Establishing the proteome of normal human cerebrospinal fluid. PLoS One 5:e10980. doi:10.1371/journal.pone.0010980.g003

    Article  PubMed  Google Scholar 

  • Scott DE, Kozlowski GP, Sheridan MN (1974) Scanning electron microscopy in the ultrastructural analysis of the mammalian cerebral ventricular system. Int Rev Cytol 37:349–388

    Article  PubMed  CAS  Google Scholar 

  • Segal MB (2000) The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell Mol Neurobiol 20:183–196. doi:10.1002/1097-0029(20010101)52:1<38::AID-JEMT6>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  • Segal MB (2001) Transport of nutrients across the choroid plexus. Microsc Res Tech 52(1):38–48

    Article  PubMed  CAS  Google Scholar 

  • Shah AS, Ben-Shahar Y, Moninger TO et al (2009) Motile cilia of human airway epithelia are chemosensory. Science 325:1131–1134. doi:10.1126/science.1173869

    Article  PubMed  CAS  Google Scholar 

  • Soria JM, Taglialatela P, Gil-Perotin S et al (2004) Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J Neurosci 24:11171–11181. doi:10.1523/JNEUROSCI.3248-04.2004

    Article  PubMed  CAS  Google Scholar 

  • Spassky N, Merkle FT, Flames N et al (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  PubMed  CAS  Google Scholar 

  • Stubbs JL, Oishi I, Izpisua Belmonte JC, Kintner C (2008) The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 40:1454–1460. doi:10.1038/ng.267

    Article  PubMed  CAS  Google Scholar 

  • Swoboda P, Adler HT, Thomas JH (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5:411–421

    Article  PubMed  CAS  Google Scholar 

  • Tissir F, Qu Y, Montcouquiol M et al (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13:700–707. doi:10.1038/nn.2555

    Article  PubMed  CAS  Google Scholar 

  • Town T, Breunig JJ, Sarkisian MR et al (2008) The stumpy gene is required for mammalian ciliogenesis. Proc Natl Acad Sci USA 105:2853–2858. doi:10.1073/pnas.0712385105

    Article  PubMed  CAS  Google Scholar 

  • Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587

    Article  PubMed  Google Scholar 

  • Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 7:1. doi:10.1186/1743-8454-7-1

    Article  PubMed  Google Scholar 

  • Wagshul ME, Chen JJ, Egnor MR et al (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104(5):810–819

    Article  PubMed  Google Scholar 

  • Yu X, Ng CP, Habacher H, Roy S (2008) Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 40:1445–1453. doi:10.1038/ng.263

    Article  PubMed  CAS  Google Scholar 

  • Zariwala MA, Knowles MR, Omran H (2007) Genetic defects in ciliary structure and function. Annu Rev Physiol 69:423–450. doi:10.1146/annurev.physiol.69.040705.141301

    Article  PubMed  CAS  Google Scholar 

  • Zein El L, Ait-Lounis A, Morle L et al (2009) RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J Cell Sci 122:3180–3189. doi:10.1242/jcs.048348

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Spassky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spassky, N. (2013). Motile Cilia and Brain Function: Ependymal Motile Cilia Development, Organization, Function and Their Associated Pathologies. In: Tucker, K., Caspary, T. (eds) Cilia and Nervous System Development and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5808-7_7

Download citation

Publish with us

Policies and ethics