Skip to main content

Ecotoxicological Risk Assessment and Management of Tire Wear Particles

  • Reference work entry

Definition

Tire wear consists of rubber particles of various sizes and chemical composition. Ingredients of rubber formulas include synthetic and natural rubber (40–40%), carbon black (20–35%), mineral oils (15–20%), sulfur (1%), zinc oxide (1.5%), stearic acid (1%), sulfenamides or thiazoles (0.5%), and various processing aids (<1%).

The predicted environmental concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l−1, and the PECs in sediments range from 0.3 to 155 g kg−1 d.w. The upper range for PEC/PNEC ratios has been estimated to be >1 both for water and sediment, meaning that tire wear particles present potential risks for aquatic organisms.

The toxicity of tire wear particles to aquatic organisms varies among brands of tires, and the environmental fate depends on road runoff treatment systems. Therefore, environmental risk management should be directed toward development and production of more environmentally friendly tires and improved road...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlbom J, Duus U (1994) Nya hjulspår- en produktstudie av gummidäck. Report 6/94. Swedish Chemicals Agency, Solna (in Swedish)

    Google Scholar 

  • Barbin WW, Rodgers MB (1994) The science of rubber compounding. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber, 2nd edn. Academic, San Diego, pp 419–469

    Google Scholar 

  • Baumann W, Ismeier M (1998) Emissionen beim bestimungsgemässen Gebrauch von Reifen. KGK Kautschuk Gummi Kunststoffe 51:182–186 (in German)

    CAS  Google Scholar 

  • Benevento S, Draper A (2005) Analysis of tire rubber leachate with a bacterial mutagenesis assay. Presented at the SETAC North America 26th annual meeting, Baltimore

    Google Scholar 

  • Brownlee BG, Carey JH, MacInnis GA et al (1992) Aquatic environmental chemistry of 2-(thiocyanomethylthio)benzothiazole and related benzothiazoles. Environ Toxicol Chem 11:1153–1168

    Article  CAS  Google Scholar 

  • Cadle SH, Williams RL (1978) Gas and particle emissions from automobile tires in laboratory and field studies. Rubber Chem Technol 52:146–158

    Article  Google Scholar 

  • Cadle SH, Williams RL (1980) Environmental degradation of tire-wear particles. Rubber Chem Technol 53:903–914

    Article  CAS  Google Scholar 

  • Cardina JA (1974) Particle size determination of tire-tread rubber in atmospheric dusts. Rubber Chem Technol 47:1005–1010

    Article  CAS  Google Scholar 

  • Collins KJ, Jensen AC, Mallinson JJ et al (2002) Environmental impact assessment of a scrap tyre artificial reef. ICES J Mar Sci 59:243–249

    Article  Google Scholar 

  • Councell TB, Duckenfield KU, Landa ER et al (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38:4206–4214

    Article  CAS  Google Scholar 

  • Dannis ML (1974) Rubber dust from the normal wear of tires. Rubber Chem Technol 47:1011–1037

    Article  CAS  Google Scholar 

  • Draper A, Robinson J (2001) Tire rubber leachate causes induction of cytochrome P450 activity in fathead minnows (Pimephales promelas). Presented at the SETAC North America 22nd annual meeting, Baltimore

    Google Scholar 

  • Davis AP, Shokouhian M, Ni S (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44:997–1009

    Article  CAS  Google Scholar 

  • EEA, European Environmental Agency (2003) EMEP/CORINAIR, Emission inventory guidebook, Groups 0707-0708: non exhaust particles from transport and road wear. Available at http://reports.eea.europa.eu/EMEPCORINAIRS/en/page002.html

  • Ellis JB, Mitchell G (2006) Urban diffuse pollution: key data information approaches for the water framework directive. Water Environ J 20:19–26

    Article  CAS  Google Scholar 

  • Evans JJ (1997) Rubber tire leachates in the aquatic environment. Rev Environ Contam Toxicol 151:67–115

    Article  CAS  Google Scholar 

  • Fauser P (1999) Particulate air pollution with emphasis on traffic generated aerosols. Thesis, Risö national laboratory, Technical University of Denmark, Roskilde

    Google Scholar 

  • Fauser P, Tjell JC, Mosbaek H et al (1999) Quantification of tire-tread particles using extractable organic zinc as tracer. Rubber Chem Technol 72:969–977

    Article  CAS  Google Scholar 

  • Fauser P, Tjell JC, Mosbaek H et al (2002) Tire-tread and bitumen particle concentrations in aerosol and soil samples. Pet Sci Technol 20:127–141

    Article  CAS  Google Scholar 

  • Gualtieri M, Andrioletti M, Vismara C et al (2005) Toxicity of tire debris leachates. Environ Int 31:723–730

    Article  CAS  Google Scholar 

  • Hartwell SI, Jordahl DM, Dawson CEO et al (1998) Toxicity of scrap tire leachates in estuarine salinities: are tires acceptable for artificial reefs? Trans Am Fish Soc 127:796–806

    Article  Google Scholar 

  • Hopke PK, Lamb RE, Natusch DFS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14:164–172

    Article  CAS  Google Scholar 

  • Hjortenkrans DST, Bergback BG, Haggerud AV (2007) Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environ Sci Technol 41:5224–5230

    Article  CAS  Google Scholar 

  • Humphrey DN, Katz LE (2000) Water-quality effects of tire shreds placed above the water table – five-year field study. Transp Res Rec 1714:18–24

    Article  CAS  Google Scholar 

  • ICIS, Chemical Business (2008) Styrene-butadiene rubber (SBR) uses and outlook. Available at http://www.icis.com

  • KemI (2003) HA oils in automotive tyres- prospects for a national ban. Report on a government commission. The Swedish National Chemicals Inspectorate, Solna

    Google Scholar 

  • Kim MG, Yagawa K, Inoue H et al (1990) Measurement of tire tread in urban air by pyrolysis-gas chromatography with flame photometric detection. Atmos Environ A-Gen 24:1417–1422

    Article  Google Scholar 

  • Kovac FJ, Rodgers MB (1994) Tire engineering. In: Mark JE, Erman B, Eirich FR (eds) Science and technology of rubber, 2nd edn. Academic, San Diego, pp 675–718

    Google Scholar 

  • Kumata H, Takada H, Ogura N (1997) 2-(4-morpholinyl)benzothiazole as an indicator of tire-wear particles and road dust in the urban environment. In: Eganhouse RP (ed) Molecular markers in environmental geochemistry, American chemical society symposium series, vol 671, Washington, DC

    Google Scholar 

  • Kumata H, Sanada Y, Takada H et al (2000) Historical trends of n-cyclohexyl-2-benzothiazoleamine, 2-(4-morpholinyl)benzothiazole, and other anthropogenic contaminants in the urban reservoir sediment core. Environ Sci Technol 34:246–253

    Article  CAS  Google Scholar 

  • Kumata H, Yamada J, Masuda K et al (2002) Benzothiazolamines as tire-derived molecular markers: sorptive behavior in street runoff and application to source apportioning. Environ Sci Technol 36:702–708

    Article  CAS  Google Scholar 

  • Lee Y-K, Kim MG, Whang K-J (1989) Simultaneous determination of natural and styrene-butadiene rubber tire tread particles in atmospheric dusts by pyrolysis-gas chromatography. J Anal Appl Pyrol 16:49–55

    Article  CAS  Google Scholar 

  • Mantecca P, Gualtieri M, Andrioletti M et al (2007) Tire debris organic extract affects Xenopus development. Environ Int 33:642–648

    Article  CAS  Google Scholar 

  • Milani M, Pucillo FP, Ballerini M et al (2004) First evidence of tyre debris characterization at the nanoscale by focused ion beam. Mater Charact 52:283–288

    Article  CAS  Google Scholar 

  • Nelson SM, Mueller G, Hemphill DC (1994) Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals. Bull Environ Contam Toxicol 52:574–581

    Article  CAS  Google Scholar 

  • Environment Agency News (1999) Tyres in the environment: executive summary Nov. 1998. Isbn. 01873 16075 5, Pp. 48. Ea, Bristol. Sci Total Environ 234:243–245

    Article  Google Scholar 

  • Ni H-G, Lu F-H, Luo X-L et al (2008) Occurrence, phase distribution, and mass loadings of benzothiazoles in riverine runoff of the Pearl River Delta, China. Environ Sci Technol 42:1892–1897

    Article  CAS  Google Scholar 

  • Pierson WR, Brachaczek WW (1974) Airborne particulate debris from rubber tires. Rubber Chem Technol 47:1275–1299

    Article  CAS  Google Scholar 

  • Reddy CM, Quinn JG (1997) Environmental chemistry of benzothiazoles derived from rubber. Environ Sci Technol 31:2847–2853

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Marurek MA et al (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    Article  CAS  Google Scholar 

  • Rydén L, Migula P (2003) Industrial society and chemical pollution. In: Rydén L (ed) Environmental science. The Baltic University Press, Uppsala

    Google Scholar 

  • Saito T (1989) Determination of styrene-butadiene and isoprene tire tread rubbers in piled particulate matter. J Anal Appl Pyrol 15:227–235

    Article  Google Scholar 

  • Sarkissian G (2007) The analysis of tire rubber traces collected after braking incidents using pyrolysis-gas chromatography/mass spectrometry. J Forensic Sci 52:1050–1056

    Article  CAS  Google Scholar 

  • Sheehan P, Warmerdam J, Humphrey D (2004) Aquatic toxicity testing: assessing the safe use of scrap tires as roadbed fill. Presented at the SETAC North America 25th annual meeting, Portland

    Google Scholar 

  • Sheehan PJ, Warmerdam JM, Ogle S et al (2006) Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations, and groundwater modelling. Environ Toxicol Chem 25:400–411

    Article  CAS  Google Scholar 

  • Spies RB, Andresen BD, Rice DW (1987) Benzothiazoles in estuarine sediments as indicators of street runoff. Nature 327:697–699

    Article  CAS  Google Scholar 

  • Stalnaker D, Turner J, Parekh D et al (1996) Indoor simulation of tyre wear: some case studies. Tyre Sci Technol 24:94–118

    Article  Google Scholar 

  • Stone RB, Coston LC, Hoss DE et al (1975) Experiments on some possible effects of tire reefs on pinfish (Lagodon rhomboides) and black sea bass (Centropristis striata). Mar Fish Rev 37:18–20

    Google Scholar 

  • Wik A (2007) Toxic components leaching from tire rubber. Bull Environ Contam Toxicol 79:114–119

    Article  CAS  Google Scholar 

  • Wik A (2008) When the rubber meets the road – Ecotoxicological hazard and risk assessment of tire wear particles. Ph.D. Thesis, Department of Plant and Environmental Sciences, University of Gothenburg

    Google Scholar 

  • Wik A, Dave G (2005) Environmental labeling of car tires-Toxicity to Daphnia magna can be used as a screening method. Chemosphere 58:645–651

    Article  CAS  Google Scholar 

  • Wik A, Dave G (2006) Acute toxicity of tire rubber leachates to Daphnia magna- variability and toxic components. Chemosphere 64:1777–1784

    Article  CAS  Google Scholar 

  • Wik A, Dave G (2009) Occurrence and effects of tire wear particles in the environment – a critical review and an initial risk assessment. Environ Pollut 157:1–11

    Article  CAS  Google Scholar 

  • Wik A, Lycken J, Dave G (2008) Sediment quality assessment of road runoff detention systems in Sweden and the potential contribution of tire wear. Water Air Soil Pollut 194:301–314

    Article  CAS  Google Scholar 

  • Wik A, Dave G, Nilsson E et al (2009) Toxicity assessment of sequential leachates of tire powder using a battery of toxicity tests and toxicity identification evaluations. Chemosphere 77:922–927

    Article  CAS  Google Scholar 

  • Zeng EY, Tran K, Young D (2004) Evaluation of potential molecular markers for urban stormwater runoff. Environ Monit Assess 90:23–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Dave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Dave, G. (2013). Ecotoxicological Risk Assessment and Management of Tire Wear Particles. In: Férard, JF., Blaise, C. (eds) Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5704-2_35

Download citation

Publish with us

Policies and ethics