Skip to main content

Thermodynamically Consistent Modelling of Gas Turbine Combustion Sprays

  • Chapter
  • First Online:
Flow and Combustion in Advanced Gas Turbine Combustors

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 1581))

Abstract

In order to support the design procedure and increase the reliability and safety of combustion engines fired with liquid fuel at a reasonable cost, numerical prediction tools well validated by comprehensive experimental data are needed. As there is today enough evidence that Large Eddy Simulation (LES) is able to well capture intrinsically time and space dependent phenomena, LES will be employed. However, in most LES based spray modules for predicting spray combustion the interactions between both phases and between evaporating droplets and combustion are either not adequately considered or not incorporated at all. The objective of this work is to develop and validate a thermodynamically consistent spray module for Large Eddy Simulation that allows describing accurately the essential processes featuring spray combustion in gas turbine combustion chambers. These include besides the injection of liquid fuel, the turbulent droplet dispersion, the vaporization of the droplets and mixture formation and the subsequent spray combustion. In particular, (1) a physically consistent SGS-model describing the influence of droplet diameter and interface transport on the gas phase turbulence as well as the effect of the droplet evaporation on the mass and scalar transport processes (turbulence modulation) has been adapted for LES into an Eulerian–Lagrangian framework. (2) Apart from classical evaporation models valid in atmospheric conditions, an advanced evaporation model, the so called non-equilibrium model, appropriate for gas turbine conditions have been integrated and validated. (3) The chemistry-turbulence interaction under droplet evaporating conditions has been considered according to a presumed (filtered) probability density function while the combustion process itself is described following a tabulated detailed chemistry based on FGM (Flamelet Generated Manifold). (4) All the developed sub-models along with the complete model have been implemented in the working package FASTEST/LAG3D and validated in non-reacting and reacting configurations with available experimental data. Comparisons include exhaust gas temperature, droplet velocities and corresponding fluctuations, droplet mean diameters and spray volume flux at different distances from the exit planes. An overall good agreement with experimental data has been achieved. Parts of this contribution has been already reported as mentioned throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadiki, A., Goryntsev, D., Wegner, B., Janicka, J.: Design of technical combustion systems using LES: state of the art and perspectives. In: 7th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements, (ETMM7), Limassol, Cyprus, 4–6 June 2008

    Google Scholar 

  2. Olbricht, C., Hahn, F., Sadiki, A., Janicka, J.: Analysis of subgrid scale mixing using a hybrid LES-Monte-Carlo PDF method. Int. J. Heat Fluid Flow 28(6), 1215–1226 (2007)

    Article  Google Scholar 

  3. Chrigui, M., Sadiki, A., Janicka, J., Zgahl, A.: Study of n-heptane spray evaporation and dispersion within premixed combustion in complex geometry configuration. In: Accepted to the 32th International Symposium on Combustion, McGill University, Montreal, Canada (2008)

    Google Scholar 

  4. Chrigui, M., Sadiki, A., Janicka, J.: Numerical analysis of spray dispersion, evaporation and combustion in a single gas turbine combustor. In: ASME TURBO-EXPO, GT2008-51253, Berlin, Germany (2008)

    Google Scholar 

  5. Chrigui, M., Batarseh, F.Z., Sadiki, A., Roisman, I., Tropea, C.: Numerical and experimental study of spray produced by an airbalst atomizer under elevated pressure conditions. In: ASME TURBO-EXPO, GT2008-51305, Berlin, Germany (2008)

    Google Scholar 

  6. Ahmad, W., Chrigui, M., Sadiki, A., Ngoma, G.D.: Effect of evaporation on the combustion behaviour of kerosene spray flame. In: ASME Turbo Expo 2010 (GT2010-22641), Glasgow, Scotland, UK, 14–18 June 2010

    Google Scholar 

  7. Chrigui, M., Sadiki, M., Ngoma, G.D.: Unsteady, turbulent, two‐phase flow using an Euler/Lagrange approach devoted to two-way coupling conditions. In: International Conference on Multiphase Flow 2010 (ICMF-2010), Florida, USA, 30 May–4 June 2010

    Google Scholar 

  8. Chrigui, M., Hage, M., Sadiki, A., Janicka, J., Dreizler, A.: Experimental and numerical analysis of spray dispersion and evaporation in a combustion chamber. At. Spray 19, 929–955 (2009)

    Article  Google Scholar 

  9. Chrigui, M., Roisman, I., Batarseh, F., Sadiki, A., Tropea, C.: Spray generated by an airblast atomizer under elevated ambient pressures. J. Propuls. Power AIAA 26(6), 1170–1183 (2010)

    Article  Google Scholar 

  10. Chrigui, M.: N-Hpetane spray evaporation and dispersion in turbulent flow within a complex geometry configuration. J. Comput. Therm. Sci. 2(1), 55–78 (2010)

    Article  Google Scholar 

  11. Chrigui, M., Sadiki, A., Janicka, J.: Evaporation and dispersion of N heptane droplets within premixed flame. J. Heat Mass Trans. 46(8–9), 869–880 (2010)

    Google Scholar 

  12. Chrigui, M., Schneider, L., Zghal, A., Sadiki, A., Janicka, J.: Droplet behavior within a LPP ambiance. J. Fluid Dyn. Mater. Process. 6(4), 399–408 (2010)

    Google Scholar 

  13. Pantangi, P., Sadiki, A., Janicka, J., Hage, M., Dreizler, A., van Oijen, J.A., Hassa, C., Heinze, J., Meier, U.: LES of pre-vaporized kerosene combustion at high pressures in a single sector combustor taking advantage of the flamelet generated manifolds method. In: Proceedings of ASME Turbo Expo 2011 (GT2011-45819), Vancouver, Canada, 6–10 June 2011

    Google Scholar 

  14. Chrigui, M., Moesl, M.K., Ahmadi, W., Sadiki, A., Janicka, J.: Partially premixed prevaporized kerozene spray combustion in turbulent flow. Exp. Therm. Fluid Sci. 34(1), 308–315 (2010)

    Article  Google Scholar 

  15. Hahn, F., Sadiki, A., Janicka, J.: Large eddy simulation of a particle laden swirling flow based on an Euler-Lagragian approach. In: 6th International Conference on Multiphase Flow (ICMF2007), Leipzig, Germany (2007)

    Google Scholar 

  16. Chrigui, M., Zghal, A., Sadiki, A., Janicka, J.: Spray evaporation and dispersion of n-heptane droplets within premixed flame. Heat Mass Trans. 46, 869–880 (2010)

    Article  Google Scholar 

  17. Sadiki, A., Ahmadi, W., Chrigui, M., Janicka, J.: Towards the impact of fuel evaporation-combustion interaction on spray combustion in gas turbine combustion chambers. Part I: effect of partial fuel vaporization on spray combustion. In: Merci, B., Roeckaerts, D., Sadiki, A. (eds.) Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion, Proceedings of the 1st International Workshop on Turbulent Spray Combustion, Chap. 3, pp. 69–110. Springer, Dordrecht/Heidelberg/London/New York (2011)

    Google Scholar 

  18. Sadiki, A., Ahmadi, W., Chrigui, M., Janicka, J.: Towards the impact of fuel evaporation-combustion interaction on spray combustion in gas turbine combustion chambers. Part II: influence of high combustion temperature on spray droplet evaporation. In: Merci, B., Roeckaerts, D., Sadiki, A. (eds.) Proceedings of the 1st International Workshop on Turbulent Spray Combustion, Chap. 3, pp. 111–132. Springer, Dordrecht/Heidelberg/London/New York (2011)

    Google Scholar 

  19. Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry combustion and flame http://dx.doi.org/10.1016/j.combustflame.2012.03.009 (2012)

  20. Chrigui, M.: N-Heptane spray evaporation and dispersion in turbulent flow within a complex geometry configuration. J. Comput. Therm. Sci. 2(1), 55–78 (2010)

    Article  Google Scholar 

  21. Oefelein, J.C.: Large eddy simulation of turbulent combustion processes in propulsion and power systems. Prog. Aerosp. Sci. 42, 2–37 (2006)

    Article  Google Scholar 

  22. Bellan, J., Selle, L.C.: Large eddy simulation composition equations for single-phase and two-phase fully multicomponent flows. Proc. Combust. Inst. 32(2), 2239–2246 (2009)

    Article  Google Scholar 

  23. Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., García, M., Riber, E., Cuenot, B., Gicquel, L., Pitsch, H., Poinsot, T.: Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow. Comptes Rendus Mécanique 337(6–7), 458–468 (2009)

    Article  MATH  Google Scholar 

  24. Apte, S.V., Mahesh, K., Moin, P.: Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32(2), 2247–2256 (2009)

    Article  Google Scholar 

  25. Pitsch, H., Desjardins, O., Balarac, G., Ihme, M.: Large-eddy simulation of turbulent reacting flows. Prog. Aerosp. Sci. 44(6), 466–478 (2008)

    Article  Google Scholar 

  26. Lederlin, T., Pitsch, H.: Large-eddy simulation of an evaporating and reacting spray. In Center for Turbulence Research, Annual Research Briefs, pp. 479–490. Stanford University (2008)

    Google Scholar 

  27. Sanjosé, M., Lederlin, T., Gicquel, L., Cuenot, B., Pitsch, H., García-Rosa, N., Lecourt, R., Poinsot, T.: LES of two-phase reacting flows. In: Center for Turbulence Research Proceedings of the Summer Program, pp. 251–263. Stanford University (2008)

    Google Scholar 

  28. Bini, M., Jones, W.P.: Large eddy simulation of an evaporating acetone spray. Int. J. Heat Fluid Flow 30(3), 471–480 (2009)

    Article  Google Scholar 

  29. Pera, C., Réveillon, J., Vervisch, L., Domingo, P.: Modeling subgrid scale mixture fraction variance in LES of evaporating spray. Combust. Flame 146(4), 635–648 (2006)

    Article  Google Scholar 

  30. Patel, N., Menon, S.: Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combust. Flame 153(1–2), 228–257 (2008)

    Article  Google Scholar 

  31. Bray, K.N.C., Peters, N.: Laminar flamelets in turbulent reacting flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 63–113. Academic, London (1994)

    Google Scholar 

  32. Hanjalic, K.: Will RANS survive LES: a view of perspectives. ASME J. Fluids Eng. 127, 831–839 (2005)

    Article  Google Scholar 

  33. Carbonell, D., Perez-Segarra, C.D., Coelho, P.J., Oliva, A.: Flamelet mathematical models for non-premixed laminar combustion. Combust. Flame 156(2), 334–347 (2009)

    Article  Google Scholar 

  34. Mortensen, M., Bilger, R.W.: Derivation of the conditional moment closure equations for spray combustion. Combust. Flame 156(1), 62–72 (2009)

    Article  Google Scholar 

  35. Dianat, M., Yang, Z., McGuirk, J.J.: Large-Eddy Simulation of a Two-Phase Plane Mixing-Layer. Advances in Turbulence XII, Springer Proceedings in Physics, Part 11, vol. 132, pp. 775–778. (2009)

    Google Scholar 

  36. Yuichi, I., Nobuyukiles, T.: LES of spray combustion flows. J. Jpn. Sci. Technol. (J-EAST) 7, 27–28 (2005)

    Google Scholar 

  37. Abramzon, B., Sirignano, W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Trans. 32, 1605–1618 (1989)

    Article  Google Scholar 

  38. Apte, S.V., Gorokhovski, M., Moin, P.: LES of atomizing spray with stochastic modelling of secondary breakup. Int. J. Multiphase Flow 29, 1503–1522 (2003)

    Article  MATH  Google Scholar 

  39. Riber, E., Moureau, V., García, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for large eddy simulation of particulate two-phase recirculating flows. J. Comput. Phys. 228(2), 539–564 (2008)

    Article  Google Scholar 

  40. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  41. Shotorban, B., Zhang, K.K.Q., Mashayek, F.: Improvement of particle concentration prediction in large-eddy simulation by defiltering. Int. J. Heat Mass Trans. 50(19–20), 3728–3739 (2007)

    Article  MATH  Google Scholar 

  42. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)

    Article  Google Scholar 

  43. Miller, R.S., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many gas–liquid flow simulations. Int. J. Multiphase Flow 24, 1026–1055 (1998)

    Article  Google Scholar 

  44. Garcia, M., Sommerer, Y., Schönfeld, T., Poisot, T.: Assessment of Euler-Euler and Euler-Lagrange strategies for reactive large-eddy simulation. In: CERFACS, IMFT – Toulouse, France, pp. 1–10 (2004)

    Google Scholar 

  45. Harstad, K., Bellan, J.: Modeling evaporation of Jet A, JP-7, and RP-1 drops at 1 to 15 bars. Combust. Flame 137, 163–177 (2004)

    Article  Google Scholar 

  46. Bekdemir, C., Somers, L.M.T., de Goey, L.P.H.: First application of the flamelet generated manifold (FGM) approach to the simulation of an igniting diesel spray. In: 19th International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress, Detroit, Michigan, April 2009

    Google Scholar 

  47. Peters, N.: Fifteen lectures on laminar and turbulent combustion, ERCOFTAC Summer School, p. 174 (1992)

    Google Scholar 

  48. Ge, H.-W., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173–185 (2008)

    Article  Google Scholar 

  49. Bastiaans, R.J.M., van Oijen, J.A., de Goey, L.P.H.: Application of flamelet generated manifolds and flamelet analysis of turbulent combustion. Int. J. Multiscale Comput. Eng. 4(3), 307–317 (2006)

    Article  Google Scholar 

  50. Baurle, R.A., Girimaji, S.S.: Assumed PDF turbulence-chemistry closure with temperature-composition correlations. Combust. Flame 134, 131–148 (2003)

    Article  Google Scholar 

  51. Patel, N., Kırtaş, M., Sankaran, V., Menon, S.: Simulation of spray combustion in a lean-direct injection combustor. Proc. Combust. Inst. 31(2), 2327–2334 (2007)

    Article  Google Scholar 

  52. Workshop on Quality Assessment of Unsteady Methods for Turbulent Combustion Predictions and Validation, Seeheim-Jugenheim, Germany, 16.–17.06.2005, see www.sfb568.de/workshops (2005)

  53. Merci, B., Rockaerst, D., Sadiki, A. (eds.): Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion, Proceedings of the 1st International Workshop on Turbulent Spray Combustion. Springer, Dordrecht (2011)

    Google Scholar 

  54. Meftah, H., Reveillon, J., Mir, A., Demoulin, F.X.: SGS analysis of the evolution equations of the mixture fraction and the progress variable variances in the presence of spray combustion. Int. J. Spray Combust. Dyn. 2(1), 21–48 (2010)

    Article  Google Scholar 

  55. Chiguier, N.: Group combustion and laser diagnostic methods in sprays: a review. Combust. Flame 51, 127–139 (1983)

    Article  Google Scholar 

  56. Luo, K., Pitsch, H., Pai, M.G.: DNS of three-dimensional swirling n-heptane spray flames, In Center for Turbulence Research, Annual Research Briefs, pp. 171–183. Stanford University (2009)

    Google Scholar 

  57. Reveillon, J., Vervisch, L.: Analysis of weakly turbulent diluted-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317–347 (2005)

    Article  MATH  Google Scholar 

  58. Domingo, P., Vervisch, L., Reveillon, J.: DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140, 172–195 (2005)

    Article  Google Scholar 

  59. Gutheil, E.: Modeling and Simulation of Droplet and Spray Combustion, Handbook of Combustion. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Google Scholar 

  60. Sazhin, S.S.: Advanced models for fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006)

    Article  Google Scholar 

  61. Masri, A.R., Gounder, J.D.: Turbulent spray flames of acetone and ethanol approaching extinction. Combust. Sci. Technol. 182(4–6), 702–715 (2010)

    Article  Google Scholar 

  62. Chiu, H.H., Kim, H.Y., Croke, E.J.: Internal group combustion of liquid droplets. In: The Combustion Institute (ed.) Proceedings of 19th Symposium on Combustion, Pittsburgh, Pennsylvania (1982)

    Google Scholar 

  63. Pozorski, J., Apte, S.A.: Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow 35(2), 118–128 (2009)

    Article  Google Scholar 

  64. Apte, S.V., Mahesh, K., Lundgren, T.: Accounting for finite-size effects in disperse particle-laden flows. Int. J. Multiphase Flow 34, 260–271 (2008)

    Article  Google Scholar 

  65. Pozorski, J., Luniewski, M.: Analysis of SGS effects on dispersed particles in LES of heated channel flows. In Quality and Reliability of LES II, ERCOFTAC Series, pp. 171–180. Springer, ISBN 978-1-4020-8577-2, e-ISBN: 978-1-4020-8578-9 (2010)

    Google Scholar 

  66. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30, 867–874 (2005)

    Article  Google Scholar 

  67. Weber, J., Peters, N.: Calibration of spray model constants for CFD-simulations of DI diesel engines using the representative interactive flamelet (RIF) model. Int. J. Veh. Des. 41(1–4), 143–164 (2006)

    Article  Google Scholar 

  68. Groh, B.: Grobstruktursimulation turbulenter Mehrphasenströmungen mit und ohne Phasenübergang. In: Dissertation, Fortschritt-Berichte VDI, Reihe 7 Strömungstechnik, Nr. 467, pp. 112–119. VDI Verlag GmbH, Düsseldorf (2005)

    Google Scholar 

  69. Landenfeld, T., Sadiki, A., Janicka, J.: A turbulence-chemistry interaction model based on a multivariate presumed Beta-PDF method for turbulent flames. Flow Turbul. Combust. 68, 111–135 (2002)

    Article  MATH  Google Scholar 

  70. Lehnhäuser, T., Schäfer, M.: Improved linear interpolation practice for finitevolume schemes on complex grids. Int. J. Numer. Meth. Fluids 38(7), 625–645 (2002)

    Article  MATH  Google Scholar 

  71. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  72. Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25, 528–536 (2004)

    Article  Google Scholar 

  73. Pierce, C.D., Moin, P.: Large eddy simulation of a confined coaxial jet with swirl and heat release, AIAA paper 98–2892 (1998)

    Google Scholar 

  74. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and non-premixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  75. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. CNRS, Toulouse (2011)

    Google Scholar 

  76. Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)

    Article  Google Scholar 

  77. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)

    Article  Google Scholar 

  78. Sadiki, A., Chrigui, M., Janicka, J., Maneshkarimi, M.R.: Modeling and simulation of effects of turbulence on vaporization, mixing and combustion of liquid fuel sprays. Flow Turbul. Combust. 75, 105–130 (2005)

    Article  MATH  Google Scholar 

  79. De, S., Lakshmisha, K.N., Bilger, R.W.: Modeling of nonreacting and reacting turbulent spray jets using a fully stochastic separated flow approach. Combust. Flame 158(10), 1992–2008 (2011)

    Article  Google Scholar 

  80. Sadiki, A.: Extended thermodynamics as modeling tool of turbulence in fluid flows. In: Trends in Applications of Mathematics to Mechanics, pp. 451–462. Shaker Verlag, Aachen (2005)

    Google Scholar 

  81. Geiss, S., Dreizler, A., Stojanovic, Z., Chrigui, M., Sadiki, A., Janicka, J.: Investigation of turbulence modification in a non-reactive two-phase flow. Exp. Fluids 36, 344–354 (2004)

    Article  Google Scholar 

  82. Chrigui, M., Ahmadi, G., Sadiki, A.: Study on interaction in spray between evaporating droplets and turbulence using second-order turbulence RANS models and a Lagrangian approach. Prog. Comput. Fluid Dyn. 4(3–5), 162–174 (2004)

    Article  Google Scholar 

  83. Garcia, M.: Développement et validation du formalisme Euler-Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes INP Toulouse, France Thèse (2009)

    Google Scholar 

  84. Lee, J., Choi, H., Park, N.: Dynamic global model for large eddy simulation of transient flow. Phys. Fluids 22(7). dx.doi.org/10.1063/1.3459156 (2010)

  85. Löffler, M., Pfadler, S., Beyrau, F., Leipertz, A., Dinkelacker, F., Huai, Y., Sadiki, A.: Experimental determination of the sub-grid scale scalar flux in a non-reacting jet flow. Flow Turbul. Combust. 1386–6184, 1573–1987 (Online) (2007)

    Google Scholar 

  86. Yoshizawa, A., Horiuti, K.: A statistically-derived subgrid-scale kinetic energy model for large eddy simulation of turbulent flow. J. Phys. Soc. Jpn. 54(8), 2834–2839 (1985)

    Article  Google Scholar 

  87. Eguz, U., Somers, L.M.T., de Goey, L.P.H.: Modeling of PCCI combustion with the FGM approach. In: 13th International Conference on Numerical Combustion, Corfu, Greece, 27–29 April 2011

    Google Scholar 

  88. Hu, Z., Cracknel, R., Somers, L.M.T.: Computational study of fuel effects in premixed charge compression ignition (PCCI) engine combustion. In: 8th International Symposium Towards Clean Diesel Engines TCDE 2011, Chester, U.K., 8–9 June 2011

    Google Scholar 

  89. Marinov, N.M.: A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet. 31, 183–220 (1999)

    Article  Google Scholar 

  90. Mashayek, F., Taulbee, D.B., Givi, P.: Modeling and simulation of two phase turbulent flow. In: Roy, D.G. (ed.) Propulsion Combustions: Fuels to Emissions, Kapitel 8, pp. 241–280. Taylor & Francis, Washington, D.C. (1998)

    Google Scholar 

  91. Yeh, F., Lei, U.: On the motion of small particles in a homogeneous turbulent shear flow. Phys. Fluids 3(11), 2758–2776 (1999)

    Google Scholar 

  92. Lei, K., Taniguchi, N., Kobayashi, T.: A new dynamic SGS-Model for large eddy simulation of particle-laden flows. In: Third AFOSR International Conference on DNS/LES (TAICDL) (2001)

    Google Scholar 

  93. Crowe, C.T.: A review of carrier-phase turbulence in dispersed flows. In: Proceedings of the 4th International Conference on Multiphase Flow, Paper-No. 604 (2001)

    Google Scholar 

  94. Tsuji, Y.: Activities in discrete particle simulation in Japan. Powder Technol. 113, 278–286 (2000)

    Article  Google Scholar 

  95. Lain, S., Sommerfeld, M.: Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int. J. Heat Fluid Flow 24, 616–625 (2003)

    Article  Google Scholar 

  96. Sommerfeld, M., Qui, H.H.: Detailed measurements in a swirling particulate two-phase flow by a phase-Doppler-anemometer. Int. J. Heat Fluid Flow 12, 20–28 (1991)

    Article  Google Scholar 

  97. Sommerfeld, M., Qui, H.H.: Experimental studies of spray evaporation in turbulent flow. Int. J. Heat Fluid Flow 19, 10–22 (1998)

    Article  Google Scholar 

  98. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulation. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  99. Elghobashi, S., Truesdell, G.C.: On the two-way interaction between homogenous turbulence and dispersed solid particles I: turbulence modification. Phys. Fluids A 5, 1790–1796 (1993)

    Article  MATH  Google Scholar 

  100. Faeth, G.M.: Mixing, transport and combustion in sprays. Prog. Energy Combust. Sci. 13, 293–345 (1987)

    Article  Google Scholar 

  101. Ahmadi, G., Cao, J., Schneider, L., Sadiki, A.: A thermodynamically formulation for chemically active multiphase turbulent flows. Int. J. Eng. Sci. 44, 699–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the financial support by the German Research Council (DFG) through the SFB568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sadiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sadiki, A., Chrigui, M., Dreizler, A. (2013). Thermodynamically Consistent Modelling of Gas Turbine Combustion Sprays. In: Janicka, J., Sadiki, A., Schäfer, M., Heeger, C. (eds) Flow and Combustion in Advanced Gas Turbine Combustors. Fluid Mechanics and Its Applications, vol 1581. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5320-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5320-4_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5319-8

  • Online ISBN: 978-94-007-5320-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics