Skip to main content

Sensing Mechanism of Stretch Activated Ion Channels

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

  • 843 Accesses

Abstract

Most of eukaryotic and prokaryotic cells possess mechanosensitive ion (MS) channels that sense mechanical force associated with cellular functions such as proliferation, differentiation, development and cell death via changes of MS channel activity. Accurate sensing mechanical force such as osmotic pressure, hydrostatic pressure, shear stress, and gravity is essential for critical strategy to survive and adapt to a new environment. Recent electrophysilogical, biochemical, and crystallographic evidences have revealed detailed 3D structures and characteristics of MS channel proteins in prokaryotic (bacteria) cells, which lead to understanding molecular mechanisms of MS channel gating in response to mechanical force. Especially, gating of MscS (mechanosensitive ion channel with small conductance) and MscL (mechanosensitive ion channel with large conductance) in bacteria cells is well studied. Purified MS channel proteins of bacteria directly sense membrane tension as mechanical force from lipid bilayer without other components that provide the driving energy for the MS channel to change the open conformation. In contrast, MS channels in eukaryotic cells (higher organisms) sense the magnitude and the direction of mechanical force through cytoskeltons near the lipid bilayer that are assumed to transmit the mechanical force. In this review, we summarize various sensing mechanisms of MS channels for mechanical force and discuss the physiological importance of MS channels to regulate cellular functions in their expressed cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM (1997) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anal 123:649–660

    Google Scholar 

  • Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273(26):670–26 674

    Google Scholar 

  • Ajouz B, Berrier C, Besnard M, Martinac B Ghazi A (2000) Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J Biol Chem 275:1015–1022

    PubMed  CAS  Google Scholar 

  • Althaus M, Bogdan R, Clauss WG, Fronius M (2007) Mechano-sensitivity of epithelial sodium channels (ENaCs): laminar shear stress increases ion channel open probability. FASEB 21:2389–2399

    CAS  Google Scholar 

  • Arnadóttir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    PubMed  Google Scholar 

  • Awayda MS, Ismailov II, Berdiev BK, Benos DJ (1995) A cloned renal epithelial Na+ channel protein displays stretch activation in planar lipid bilayers. Am J Physio 268:C1450–C1459

    CAS  Google Scholar 

  • Awayda MS, and Subramanyam M (1998) Regulation of the epithelial Na+ channel by membrane tension. J Gen Physiol 112:97–111

    PubMed  CAS  Google Scholar 

  • Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, Hoffmann EK (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449

    PubMed  CAS  Google Scholar 

  • Bass RB, Strop P, Baeclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    PubMed  CAS  Google Scholar 

  • Batiza AF, Kuo MM, Yoshimura K, Kung C (2002) Gating the bacterial mechanosensitive channel MscL in vivo. Proc Natl Acad Sci USA 99:5643–5648

    PubMed  CAS  Google Scholar 

  • Belyy V, Anishkin A, Kamaraju K, Liu N, Sukharev S (2010) The tension-transmitting ‘clutch’ in the mechanosensitive channel MscS. Nat Struct Mol Biol 17:451–458

    PubMed  CAS  Google Scholar 

  • Berdiev BK, Karlson KH, Jovov B, Ripoll PJ, Morris R, Loffing-Cueni D, Halpin P, Stanton BA, Kleyman TR, Ismailov II (1998) Subunit stoichiometry of a core conduction element in a cloned epithelial amiloride-sensitive Na+ Channel. Biophys J 75:2292–2301

    PubMed  CAS  Google Scholar 

  • Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin S, Khochbin S Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM (2006) Assembly and mechanosensory function of focal adhesions: Experiments and models. Eur J Cell Biol 85:165–173

    PubMed  CAS  Google Scholar 

  • Bichet D, Peters D, Patel A, Delmas P, Honoré E (2006) The cardiovascular polycystins: insights from autosomal dominant polycystic kidney disease and transgenic animal models. Trends Cardiovasc Med 16:292–298

    PubMed  CAS  Google Scholar 

  • Blount P, Moe PC (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol 7:420–424

    PubMed  CAS  Google Scholar 

  • Butterworth MB (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802 (12):1166–1177

    PubMed  CAS  Google Scholar 

  • Caldwell RA, Boucher RC, Stutts MJ (2003) Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physiol 286:C190–C194

    PubMed  Google Scholar 

  • Canessa CM, Merillat AM, Rossier BC (1994) Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol Cell Physiol 267:C1682–1690

    CAS  Google Scholar 

  • Carattino MD, Sheng S, Kleyman TR (2004) Epithelial Na+ channels are activated by laminar shear stress. J Biol Chem 279:4120–4126

    PubMed  CAS  Google Scholar 

  • Carattino MD, Sheng S, Kleyman TR (2005) Mutations in the pore region modify epithelial sodium channel gating by shear stress. J Biol Chem 280:4393–4401

    PubMed  CAS  Google Scholar 

  • Carmel JA, Friedman F, Adams FH (1965) Fetal tracheal lgation and lung development. Am J Dis Child 109:452–456

    PubMed  CAS  Google Scholar 

  • Carmeliet G, Vico L, Bouillon R (2001) Space flight: a challenge for normal bone homeostasis. Crit Rev Eukaryot Gene Expr 11:131–144

    PubMed  CAS  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  • Coroneos E, Martinez M, McKenna S, Kester M (1995) Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation. J Biol Chem 270:23305–23309

    PubMed  CAS  Google Scholar 

  • Deeds J, Cronin F, Duncan LM (2000) Patterns of melastatin mRNA expression in melanocytic tumors. Hum Pathol 31:1346–1356

    PubMed  CAS  Google Scholar 

  • Diakov A, Korbmacher C (2004) A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel’s alpha-subunit. J Biol Chem 279:38134–38142

    PubMed  CAS  Google Scholar 

  • Drew LJ, Rohrer DK, Price MP, Blaver KE, Cockayne DA, Cesare P, Wood JN (2004) Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol 556:691–710

    PubMed  CAS  Google Scholar 

  • Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435–1441

    PubMed  CAS  Google Scholar 

  • Drummond HA, Abboud FM, Welsh MJ (2000) Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1–12

    PubMed  CAS  Google Scholar 

  • Drummond HA, Welsh MJ, Abboud FM (2001) ENaC subunits are molecular components of the arterial baroreceptor complex. Ann N Y Acad Sci 940:42–47

    PubMed  CAS  Google Scholar 

  • Drummond HA, Gebremedhin D, Harder DR (2004) Degenerin/epithelial Na+ channel proteins: components of a vascular mechanosensor. Hypertension 44:643–648

    PubMed  CAS  Google Scholar 

  • Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, Tepper RI, Shyjan AW (1998) Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 58:1515–1520

    PubMed  CAS  Google Scholar 

  • Edwards MD, Booth IR, Miller S (2004) Gating the mechanosensitive channels: MscS a new paradigm? Curr Opin Microbiol 7:163–167

    PubMed  CAS  Google Scholar 

  • Edwards MD, Li Y, Kim S, Miller S, Bartlett W, Black S, Dennison S, Iscla I, Blount P, Bowie JU, Booth IR (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12:113–119

    PubMed  CAS  Google Scholar 

  • Engbretson BG, Stoner LC (1987) Flow-dependent potassium secretion by rabbit cortical collecting tubule in vitro. Am J Physiol Renal Physiol 253:F896–F903

    CAS  Google Scholar 

  • Ermakov YA, Averbakh AZ, Arbuzova AB, Sukharev SI (1998) Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 2. A dipole component of the boundary potential on membranes with different surface charge. Membr Cell Biol 12:411–426

    PubMed  Google Scholar 

  • Fewell JE, Hislop AA, Kitterman JA, Johnson P (1983) Effect of tracheostomy on lung development in fetal lambs. Appl Physiol 55:1103–1108

    CAS  Google Scholar 

  • Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L (1998) The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17:344–352

    PubMed  CAS  Google Scholar 

  • Franco R, Lezama R, Ordaz B, Pasantes-Morales H (2004) Epidermal growth factor receptor is activated by hypoosmolarity and is an early signal modulating osmolyte efflux path- ways in Swiss 3T3 fibroblasts. Pflugers Arch – Eur J Physiol 447:830–839

    CAS  Google Scholar 

  • Froniusa M, Bogdana R, Althausa M, Morty RE, Clauss WG (2010) Epithelial Na+ channels derived from human lung are activated by shear force. Respir Physiol Neurobiol 170:113–119

    Google Scholar 

  • Garcia-Anoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP (2001) Transport and localization of the DEG/ENaC ion channel BNaC1αto peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21:2678–2686

    PubMed  CAS  Google Scholar 

  • Garty H, Palmer LG (1997) Epithelial sodium channels: function, structure, and regulation. Physiol Rev 77:359–396

    PubMed  CAS  Google Scholar 

  • Giamarchi A, Padilla F, Coste B, Raoux M, Crest M, Honoré E, Delmas P (2006) The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Rep 7:787–793

    PubMed  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Harteneck C, Schultz G (2007) TRPV4 and TRPM3 as Volume-Regulated Cation Channels. In: Liedtke WB, Heller S, editors. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascas. Bocade Raton (FL): CRC Press; Chap. 10

    Google Scholar 

  • Häse CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270:18329–18334

    PubMed  Google Scholar 

  • Hooper SB, Wallace MJ (2006) Role of the physicochemical environment in lung development. Clin Exp Pharmacol Physiol 33:273–279

    PubMed  CAS  Google Scholar 

  • Jacobs LS, Kester M (1993) Sphingolipids as mediators of effects of platelet-derived growth factor in vascular smooth muscle cells. Am J Physiol Cell Physiol 265:C740–C747

    CAS  Google Scholar 

  • Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    PubMed  CAS  Google Scholar 

  • Jernigan NL, Drummond HA (2005) Vascular ENaC proteins are required for renal myogenic constriction. Am J Physiol Renal Physiol 289:F891–F901

    PubMed  CAS  Google Scholar 

  • Ji, HL, Fuller, CM, Benos, DJ (1998) Osmotic pressure regulates a-rENaC expressed in Xenopus oocytes. Am J Physiol Cell Physiol 275:C1182–C1190

    CAS  Google Scholar 

  • Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767

    PubMed  CAS  Google Scholar 

  • Kellenberger S, Gautschi I, Schild L (1999a) A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. Proc Natl Acad Sci USA 96:4170–4175

    CAS  Google Scholar 

  • Kellenberger S, Hoffmann-Pochon N, Gautschi I, Schneeberger E, Schild L (1999b) On the molecular basis of ion permeation in the epithelial Na+ channel. J Gen Physiol 114:13–30

    CAS  Google Scholar 

  • Kellenberger S, Auberson M, Gautschi I, Schneeberger E, Schild L (2001) Permeability properties of ENaC selectivity filter mutants. J Gen Physiol 118:679–692

    PubMed  CAS  Google Scholar 

  • Kizer N, Guo XL, Hriska K (1997) Reconstitution of stretch-activated cation channels by expression of the a-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci USA 94:1013–1018

    PubMed  CAS  Google Scholar 

  • Knight KK, Olson DR, Zhou R, Snyder PM (2006) Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc Natl Acad Sci USA 103:2805–2808

    PubMed  CAS  Google Scholar 

  • Kraft R, Harteneck C (2005) The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Arch— Eur J Physiol 451:204–211

    CAS  Google Scholar 

  • Krishtal OA, Pidoplichko VI (1981) Receptor for protons in the membrane of sensory neurons. Brain Res 214:150–154

    PubMed  CAS  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    PubMed  CAS  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    PubMed  CAS  Google Scholar 

  • LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7:33–47

    PubMed  CAS  Google Scholar 

  • Lehoux S, Esposito B, Merval R, Loufrani L, Tedgui A (2000) Pulsatile stretch-induced extracellular signal-regulated kinase 1/2 activation in organ culture of rabbit aorta involves reactive oxygen species. Arterioscler Thromb Vasc Biol 20:2366–2372

    PubMed  CAS  Google Scholar 

  • Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. EMBO J 18:1730–1737

    PubMed  CAS  Google Scholar 

  • Li Y, Wray R, Blount P (2004) Intragenic suppression of gain-of-function mutations in the Escherichia coli mechanosensitive channel, MscL. Mol Microbiol 53:485–495

    PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci USA 100:13698–13703

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    PubMed  CAS  Google Scholar 

  • Liu M, Xu J, Liu J, Kraw ME, Tanswell AK, and Post M (1995) Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Physiol Lung Cell Mol Physiol 268:L729–L738

    CAS  Google Scholar 

  • Liu M, Tanswell AK, and Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol Lung Cell Mol Physiol 277:L667–L683

    CAS  Google Scholar 

  • Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM (2003) Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 285:F998–F1012

    PubMed  CAS  Google Scholar 

  • Malnic G, Berliner RW, Giebisch G (1989) Flow dependence of K+ secretion in cortical distal tubules of the rat. Am J Physiol Renal Physiol 256:F932–F941

    CAS  Google Scholar 

  • Mano I, Driscoll M (1999) DEG/ENaC channels: a touchy superfamily that watches the salt. Bioessays 21:568–578

    PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301

    PubMed  CAS  Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    PubMed  CAS  Google Scholar 

  • Marunaka Y, Eaton DC (1991) Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am J Physiol Cell Physiol 260:C1071–C1084

    CAS  Google Scholar 

  • Marunaka Y, Tohda H, Hagiwara N, Nakahari T (1994) Antidiuretic hormone-responding nonselective cation channel in distal nephron epithelium (A6). Am J Physiol Cell Physiol 266:C1513–C1522

    CAS  Google Scholar 

  • Marunaka Y, Shintani Y, Downey GP, Niisato N (1997) Activation of Na+-permeant cation channel by stretch and cyclic AMP-dependent phosphorylation in renal epithelial A6 Cells. J Gen Physiol 110:327–336

    PubMed  CAS  Google Scholar 

  • McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73

    PubMed  CAS  Google Scholar 

  • Mederos Y, Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    Google Scholar 

  • Miller S, Edwards MD, Ozdemir C, Booth IR (2003) The closed structure of the MscSmechanosensitive channel. Cross-linking of single cysteine mutants. J Biol Chem 278:32246–32250

    PubMed  CAS  Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–C101

    PubMed  CAS  Google Scholar 

  • Mogil JS, Breese NM, Witty MF, Ritchie J, Rainville ML, Ase A, Abbadi N, Stucky CL, Seguela P (2005) Transgenic expression of a dominant- negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25:9893–9901

    PubMed  CAS  Google Scholar 

  • Morimoto T, Liu W, Woda C, Carattino M, Wei Y, Hughey R, Apodaca G, Satlin LM, Kleyman TR (2006) Mechanism underlying flow-stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 291:F663–F669

    PubMed  CAS  Google Scholar 

  • Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    PubMed  CAS  Google Scholar 

  • Muraki K, Iwata Y, Katanosaka Y, Ito T, Ohya S, Shigekawa M, Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93:829–838

    PubMed  CAS  Google Scholar 

  • Nakahari T, Marunaka Y (1996) ADH action on whole-cell currents by cytosolic Ca2+-dependent pathways in aldosterone-treated A6 cells. J Membr Biol 154:35–44

    PubMed  CAS  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    PubMed  CAS  Google Scholar 

  • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171

    PubMed  CAS  Google Scholar 

  • Nguyen T, Clare B, Guo W, Martinac B (2005) The effects of parabens on the mechanosensitive channels of E. coli. Eur Biophys J 34:389–396

    PubMed  CAS  Google Scholar 

  • Niisato N, Marunaka Y (2001) Blocking action of cytochalasin D on protein kinase A stimulation of a stretch-activated cation channel in renal epithelial A6 cells. Biochem Pharmacol 61:761–765

    PubMed  CAS  Google Scholar 

  • Niisato N, Van Driessche W, Liu M, Marunaka Y (2000) Involvement of protein tyrosine kinase in osmoregulation of Na+ transport and membrane capacitance in renal A6 cells. J Membr Biol 175:63–77

    PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bodding M, and Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch— Eur J Physiol 443:227–233

    CAS  Google Scholar 

  • Nomura T, Sokabe M, Yoshimura K (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91:2874–2881

    PubMed  CAS  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007a) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 292:C460–C467

    CAS  Google Scholar 

  • Numata T, Shimizu T, Okada Y (2007b) Direct Mechano-Stress Sensitivity of TRPM7 Channel. Cell Physiol Biochem 19:01–08

    CAS  Google Scholar 

  • Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98:245–253

    PubMed  CAS  Google Scholar 

  • Pagnamenta AT, Holt R, Yusuf M, Pinto D, Wing K, Betancur C, Scherer SW, Volpi EV, Monaco AP (2011) A family with autism and rare copy number variants disrupting the Duchenne/Becker muscular dystrophy gene DMD and TRPM3. J Neurodevelop Disord 3:124–131

    Google Scholar 

  • Palmer LG, Frindt G (1996) Gating of Na+ channels in the rat cortical collecting tubule: effects of voltage and membrane stretch. J Gen Physiol 107:35–45

    PubMed  CAS  Google Scholar 

  • Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93:557–564

    PubMed  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    PubMed  Google Scholar 

  • Prat AG, Ausiello DA, Cantiello HF (1993a) Vasopressin and protein kinase A activate G protein-sensitive epithelial Na+ channels. Am J Physiol Cell Physiol 265:C218–C223

    CAS  Google Scholar 

  • Prat AG, Bertorello AM, Ausiello DA, Cantiello HF (1993b) Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am J Physiol Cell Physiol 265:C224–C333

    CAS  Google Scholar 

  • Prawitt D, Enklaar T, Klemm G, Gartner B, Spangenberg C, Winterpacht A, Higgins M, Pelletier J, Zabel B (2000) Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 22:203–216

    Google Scholar 

  • Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang, B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    PubMed  CAS  Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    PubMed  CAS  Google Scholar 

  • Rossier BC (2002) Hormonal regulation of the epithelial sodium channel ENaC: N or Po? J Gen Physiol 120:67–70

    PubMed  CAS  Google Scholar 

  • Rossier BC (2004) The epithelial sodium channel: activation by membrane-bound serine proteases. Proc Am Thorac So. 1:4–9

    CAS  Google Scholar 

  • Rotin D, Bar-Sagi D, O’Brodovich H, Merilainen J, Lehto VP, Canessa CM, Rossier BC, Downey GP (1994) An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J 13:4440–4450

    PubMed  CAS  Google Scholar 

  • Roza C, Puel JL, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558:659–669

    PubMed  CAS  Google Scholar 

  • Sadoshima J, Qiu Z, Morgan JP, Izumo S (1996) Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15:5535–5546

    PubMed  CAS  Google Scholar 

  • Satlin LM (1994) Postnatal maturation of potassium transport in rabbit cortical collecting duct. Am J Physiol Renal Physiol 266:F57–F65

    CAS  Google Scholar 

  • Satlin LM, Sheng S, Woda CB, Kleyman TR (2001) Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol 280:F1010–F1018

    PubMed  CAS  Google Scholar 

  • Sawada Y, Sheetz MP (2002) Force transduction by Triton cytoskeletons. J Cell Biol 156:609–615

    PubMed  CAS  Google Scholar 

  • Schild L, Schneeberger E, Gautschi I, Firsov D (1997) Identification of amino acid residues in the α, β, γ subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 109:15–26

    PubMed  CAS  Google Scholar 

  • Sharif Naeini R, Folgering J, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E (2009) Polycystin-1 and −2 dosage regulates pressure sensing. Cell 139:587–596

    PubMed  CAS  Google Scholar 

  • Sidhaye VK, Schweitzer KS, Caterina MJ, Shimoda L, King LS (2008) Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc Natl Acad Sci USA 105:3345–3350

    PubMed  CAS  Google Scholar 

  • Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59:722–728

    PubMed  CAS  Google Scholar 

  • Sokolchik I, Tanabe T, Baldi PF, Sze JY (2005) Polymodal sensory function of the Caenorhabditis elegans OCR-2 channel arises from distinct intrinsic determinants within the protein and is selectively conserved in mammalian TRPV proteins. J Neurosci 25:1015–1023

    PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    PubMed  CAS  Google Scholar 

  • Standly PR, Cammarata A, Nolan BP, Purgason CT, Stanley MA (2002) Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 283:H1907–H1914

    Google Scholar 

  • Stokes JB (1993) Ion transport by the collecting duct. Semin Nephrol 13:202–212

    PubMed  CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    PubMed  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–272

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65:177–183

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:265–268

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Schroeder MJ, McCaslin DR (1999) Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J Membr Biol 171:183–193

    PubMed  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003) Impaired Pressure Sensation in Mice Lacking TRPV4. J Biol Chem 278:22664–22668

    PubMed  CAS  Google Scholar 

  • Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120:348–354

    PubMed  CAS  Google Scholar 

  • Tamada M, Sheetz MP, Sawada Y (2004) Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709–718

    PubMed  CAS  Google Scholar 

  • Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis: the effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    PubMed  CAS  Google Scholar 

  • Taruno A, Niisato N, Marunaka Y (2007) Hypotonicity stimulates renal epithelial sodium transport by activating JNK via receptor tyrosine kinases. Am J Physiol Renal Physiol 293:F128–F138

    PubMed  CAS  Google Scholar 

  • Thoroed SM, Lauritzen L, Lambert IH, Hansen HS, Hoffmann EK (1997) Cell swelling activates phospholipase A2 in Ehrlich ascites tumor cells. J Membr Biol 160:47–58

    PubMed  CAS  Google Scholar 

  • Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318

    PubMed  CAS  Google Scholar 

  • Tsavaler L, Shapero MH, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    PubMed  CAS  Google Scholar 

  • Turnheim K (1991) Intrinsic regulation of apical sodium entry in epithelia. Physiol Rev 71:429–445

    PubMed  CAS  Google Scholar 

  • Urbach V, Leguen I, O’Kelly I, Harvey BJ (1999) Mechanosensitive calcium entry and mobilization in renal A6 cells. J Membr Biol 168:23–37

    Google Scholar 

  • Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC (1997) An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389:607–610

    PubMed  CAS  Google Scholar 

  • Vasquez V, Sotomayor M, Cortes DM, Roux B, Schulten K, Perozo E (2008) Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J Mol Biol 378:55–70

    PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    PubMed  CAS  Google Scholar 

  • Ward ML, Williams IA, Chu Y, Cooper PJ, Ju YK, Allen DG (2008) Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy. Prog Biophys Mol Biol 97:232–249

    PubMed  CAS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Sokabe M (2010) Mechanosensitivity of ion channels based on protein-lipid interactions. J R Soc Interface 7(Suppl 3):S307–S320

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-Function Mutations at the Rim of the Funnel of Mechanosensitive Channel MscL. Biophys J 86:2113–2120

    PubMed  CAS  Google Scholar 

  • Yu WG, Sokabe M (1997) Hypotonically induced whole-cell currents in A6 cells: relationship with cell volume and cytoplasmic Ca2+. Jpn J Physiol 47:553–565

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Niisato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Niisato, N., Marunaka, Y. (2012). Sensing Mechanism of Stretch Activated Ion Channels. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_6

Download citation

Publish with us

Policies and ethics