Skip to main content

Genetic and Environmental Determinants in Multiple Myeloma: Implications for Therapy

  • Chapter
  • First Online:
  • 1270 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 14))

Abstract

Multiple myeloma is an incurable hematopoietic malignancy linked to more than 10,000 deaths annually. This dyscrasia is associated with significant co-morbidities as a result of the clonal expansion of bone marrow resident, immunoglobulin secreting, plasma cells. As will most cancers, myeloma tumorigenesis is a defined by both genetic transforming events and the growth and survival factors provided by the bone marrow microenvironment. The earliest genetic aspects of myeloma tumorigenesis have been shown to result from non-random translocations of genes that normally function as determinants of cell proliferation or cell survival to regions juxtaposed to active immunoglobulin heavy chain (IgH) enhancer elements, Secondary somatic mutations are then acquired that affect oncogenic signaling via Ras, Raf, NF-κB, FGFR3, or myc. Further, the loss of tumor suppressor function with deletion of the short of arm of chromosome 17 as later events. These events have been characterized over the last several decades and provide a model for the progression from the premalignant MGUS (monoclonal gammopathy of undetermined significance), to smoldering myeloma, to active myeloma, to extramedually plasma cell leukemia, and cells lines. Even in the setting of a genetic disease, it has long been appreciated that the bone marrow microenvironment also promotes multiple myeloma cell pathogenesis and has become an important target for therapeutic intervention. With increased understanding of the both the genetics of myeloma and the bone marrow niche numerous novel therapies are underdevelopment that will be discussed within this book chapter with the anticipation of improved clinical outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma Blood 109(7):2708-2717

    Google Scholar 

  • Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T, Overton RM, Ahmann G, Bruzek LM, Adjei AA, Kaufmann SH, Wright JJ, Sullivan D, Djulbegovic B, Cantor AB, Greipp PR, Dalton WS, Sebti SM (2004) Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 103(9):3271–3277 [Epub 2004 Jan 15]

    Google Scholar 

  • Annunziata CM, Hernandez L, Davis RE, Zingone A, Lamy L, Lam LT et al (2011) A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 117(8):2396–2404

    Article  PubMed  CAS  Google Scholar 

  • Armand JP, Burnett AK, Drach J, Harousseau JL, Löwenberg B, San Miguel J (2007) The emerging role of targeted therapy for hematologic malignancies: update on bortezomib and tipifarnib. Oncologist 12(3):281–290. Review

    Google Scholar 

  • Avet-Loiseau et al (2010) Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). Clin Oncol 28(30):4630–4634 [Epub 2010 Jul 19]

    Google Scholar 

  • Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM et al (2009) Rho-A and Rac-1 GTPases play major and differential roles in SDF1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114(3):619–629

    Article  PubMed  CAS  Google Scholar 

  • Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351

    Article  PubMed  CAS  Google Scholar 

  • Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076

    Article  PubMed  CAS  Google Scholar 

  • Bida JP, Kyle RA, Therneau TM, Melton LJ 3rd, Plevak MF, Larson DR et al (2009) Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients. Mayo Clin Proc 84(8):685–693

    Article  PubMed  Google Scholar 

  • Bisping G, Wenning D, Kropff M, Gustavus D, Muller-Tidow C, Stelljes M et al (2009) Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma. Clin Cancer Res 15(2):520–531

    Article  PubMed  CAS  Google Scholar 

  • Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  • Blade J, Dimopoulos M, Rosinol L, Rajkumar SV, Kyle RA (2010) Smoldering (asymptomatic) multiple myeloma: current diagnostic criteria, new predictors of outcome, and follow-up recommendations. J Clin Oncol 28(4):690–697

    Article  PubMed  CAS  Google Scholar 

  • Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203(9):2201-2213

    Article  PubMed  CAS  Google Scholar 

  • Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet JP, Ahmann GJ, Adli M, Anderson KC, Ardlie KG, Auclair D, Baker A, Bergsagel PL, Bernstein BE, Drier Y, Fonseca R, Gabriel SB, Hofmeister CC, Jagannath S, Jakubowiak AJ, Krishnan A, Levy J, Liefeld T, Lonial S, Mahan S, Mfuko B, Monti S, Perkins LM, Onofrio R, Pugh TJ, Rajkumar SV, Ramos AH, Siegel DS, Sivachenko A, Stewart AK, Trudel S, Vij R, Voet D, Winckler W, Zimmerman T, Carpten J, Trent J, Hahn WC, Garraway LA, Meyerson M, Lander ES, Getz G, Golub TR (2011) Initial genome sequencing and analysis of multiple myeloma. Nature 471(7339):467–472

    Article  PubMed  CAS  Google Scholar 

  • Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R, Valdez R, Palmer SE, Haas SS, Stewart AK, Fonseca R, Kremer R, Cattoretti G, Bergsagel PL (2008) AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13(2):167–180

    Article  PubMed  CAS  Google Scholar 

  • Chng WJ, Ketterling RP, Fonseca R (2006) Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosom Cancer 45(12):1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Coluccia AM, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A et al (2008) Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112(4):1346–1356

    Article  PubMed  CAS  Google Scholar 

  • David E, Kaufman JL, Flowers CR, Schafer-Hales K, Torre C, Chen J, Marcus AI, Sun SY, Boise LH, Lonial S (2010) Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood 116(24):5285–5288 [Epub 2010 Sep 15]

    Google Scholar 

  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917 [Epub 2011 Sep 1]

    Google Scholar 

  • Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 2004 22(6):1095–1102.

    Google Scholar 

  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399(6735):491–496

    Article  PubMed  CAS  Google Scholar 

  • Dispenzieri A, Kyle RA, Katzmann JA, Therneau TM, Larson D, Benson J, Clark RJ, Melton LJ 3rd, Gertz MA, Kumar SK, Fonseca R, Jelinek DF, Rajkumar SV (2008) Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (asymptomatic) multiple myeloma. Blood 111(2):785–789 [Epub 2007 Oct 17].

    Google Scholar 

  • Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y et al (2004) Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int 54(5):285–294

    Article  PubMed  CAS  Google Scholar 

  • Elnenaei MO, Hamoudi RA, Swansbury J, Gruszka-Westwood AM, Brito-Babapulle V, Matutes E et al (2003) Delineation of the minimal region of loss at 13q14 in multiple myeloma. Genes Chromosom Cancer 36(1):99–106

    Article  PubMed  CAS  Google Scholar 

  • Gertz MA (2008) New targets and treatments in multiple myeloma: Src family kinases as central regulators of disease progression. Leuk Lymphoma 49(12):2240–2245

    Article  PubMed  CAS  Google Scholar 

  • Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, Hollmig K, Zangarri M, Pineda-Roman M, van Rhee F, Cavallo F, Burington B, Crowley J, Tricot G, Barlogie B, Shaughnessy JD Jr (2006) Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108(5):1724–1732 [Epub 2006 May 16]

    Google Scholar 

  • Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. The Biochem J 374(Pt 1):1–20

    Article  CAS  Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev 7(8):585-598

    CAS  Google Scholar 

  • Hoang B, Frost P, Shi Y, Belanger E, Benavides A, Pezeshkpour G et al (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116(22):4560–4568

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H, Tsuyama N, Obata MMMK (2006) Mitogenic signals initiated via interleukin-6 receptor complexes in cooperation with other transmembrane molecules in myelomas. J Clin Exp Hematol 46(2):55–66

    Article  Google Scholar 

  • Kimura RH, Levin AM, Cochran FV, Cochran JR (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77(2):359–369

    Article  PubMed  CAS  Google Scholar 

  • Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8(1):22–33

    Article  PubMed  CAS  Google Scholar 

  • Kline M, Donovan K, Wellik L, Lust C, Jin W, Moon-Tasson L et al (2007) Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res 31(5):591–598

    Article  PubMed  CAS  Google Scholar 

  • Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 111(6):2962–2972

    Article  PubMed  CAS  Google Scholar 

  • Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23(1):3–9

    Article  PubMed  CAS  Google Scholar 

  • Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G, Kröger N, Einsele H, Vesole DH, Dimopoulos M, San Miguel J, Avet-Loiseau H, Hajek R, Chen WM, Anderson KC, Ludwig H, Sonneveld P, Pavlovsky S, Palumbo A, Richardson PG, Barlogie B, Greipp P, Vescio R, Turesson I, Westin J, Boccadoro M, International Myeloma Working Group (2010) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24(6):1121–1127 [Epub 2010 Apr 22] Review

    Google Scholar 

  • Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q et al (2008) The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111(2):856–864

    Article  PubMed  CAS  Google Scholar 

  • Li WX (2008) Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 18(11):545–551

    Article  PubMed  CAS  Google Scholar 

  • Lonial S (2010) Presentation and risk stratification-improving prognosis for patients with multiple myeloma. Cancer Treat Rev 36 (Suppl 2):S12–S17 [Review]

    Google Scholar 

  • Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH et al (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613(1–3):146–154

    Article  PubMed  CAS  Google Scholar 

  • Markovic O, Marisavljevic D, Cemerikic V, Vidovic A, Perunicic M, Todorovic M et al (2008) Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol 25(4):451–457

    Article  PubMed  Google Scholar 

  • Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9):1158–1165

    Article  PubMed  CAS  Google Scholar 

  • McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S et al (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16(4):483–489

    Article  PubMed  CAS  Google Scholar 

  • Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev 9(9):665–674

    Article  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proceedings of the National Academy of Sciences of the United States of America. 99(22):14374–14379

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG, Munshi NC, Anderson KC (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 21(6):1007–1034, vii–viii

    Google Scholar 

  • Moline JM, Herbert R, Crowley L, Troy K, Hodgman E, Shukla G et al (2009) Multiple myeloma in World Trade Center responders: a case series. J Occup Environ Med 51(8):896–902

    Article  PubMed  Google Scholar 

  • Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT et al (2009) HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 8(8):2441–2451

    Article  PubMed  CAS  Google Scholar 

  • Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI (2004) Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103(9):3503–3510

    Article  PubMed  CAS  Google Scholar 

  • Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111(4):2220–2229

    Article  PubMed  CAS  Google Scholar 

  • O’Neal J, Gao F, Hassan A, Monahan R, Barrios S, Kilimann MW, Lee I, Chng WJ, Vij R, Tomasson MH (2009) Neurobeachin (NBEA) is a target of recurrent interstitial deletions at 13q13 in patients with MGUS and multiple myeloma. Exp Hematol 37(2):234–244. Erratum in: Exp Hematol. 2009 Apr; 37(4):532. Kilimann, Manfred W [added]

    Google Scholar 

  • Ohwada C, Nakaseko C, Koizumi M, Takeuchi M, Ozawa S, Naito M et al (2008) CD44 and hyaluronan engagement promotes dexamethasone resistance in human myeloma cells. Eur J Haematol 80(3):245–250

    Article  PubMed  CAS  Google Scholar 

  • Palumbo A, Gay F (2010) Towards a new standard of care for patients with myeloma? Lancet Oncol 11(1):3–4

    Article  PubMed  Google Scholar 

  • Pilarski LM, Pilarski PM, Belch AR (2010) Multiple myeloma may include microvessel endothelial cells of malignant origin. Leuk Lymphoma 51(4):592–597

    Article  PubMed  Google Scholar 

  • Popovic R, Licht JD (2011) MEK and MAF in myeloma therapy. Blood 117(8):2300–2302

    Article  PubMed  CAS  Google Scholar 

  • Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW et al (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113(19):4819-4820

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Sowa ME, Ottinger M, Smith JA, Shi Y, Harper JW et al (2011) The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol 31(13):2641–2652

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar SV (2011) Multiple myeloma: 2011 update on diagnosis, risk-stratification, and management. Am J Hematol 86(1):57–65

    Article  PubMed  Google Scholar 

  • Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE et al (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29(8):1190–1202

    Article  PubMed  CAS  Google Scholar 

  • Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M et al (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res. 14(23):7924–7929

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Hideshima T, Mitsiades C, Anderson KC (2007) The emerging role of novel therapies for the treatment of relapsed myeloma. J Natl Compr Canc Netw 5(2):149–162

    PubMed  CAS  Google Scholar 

  • Roodman GD (2010) Targeting the bone microenvironment in multiple myeloma. J Bone Miner Metab 28(3):244–250

    Article  PubMed  Google Scholar 

  • Rossi J-F, Manges Robert F, Peter Voorhees, Sutherland Heather J, Orlowski Robert Z (2008) Preliminary results of CNTO 328, an anti-IL-6 monoclonal antibody, in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma. Blood ASH Annu Meet Abstr 112:867

    Google Scholar 

  • Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97(2):346-351

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JR (2011) The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 204(1):3–12

    Article  PubMed  Google Scholar 

  • Sciammas R, Davis MM (2004) Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J Immunol 172(9):5427–5440

    PubMed  CAS  Google Scholar 

  • Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93

    Article  PubMed  CAS  Google Scholar 

  • Shain KH, Dalton WS (2009) Environmental-mediated drug resistance: a target for multiple myeloma therapy. Expert Rev Hematol 2(6):649–662. Review

    Google Scholar 

  • Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA et al (2009) Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 69(3):1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Shelef M, Calame K (2004) Plasma cell differentiation and multiple myeloma. Curr Opin Immunol 16(2):226–234

    Article  PubMed  CAS  Google Scholar 

  • Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–242

    Article  PubMed  CAS  Google Scholar 

  • Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, Stewart JP, Kordsmeier B, Randolph C, Williams DR, Xiao Y, Xu H, Epstein J, Anaissie E, Krishna SG, Cottler-Fox M, Hollmig K, Mohiuddin A, Pineda-Roman M, Tricot G, van Rhee F, Sawyer J, Alsayed Y, Walker R, Zangari M, Crowley J, Barlogie B (2007) A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 109(6):2276–2284 [Epub 2006 Nov 14]

    Google Scholar 

  • Sher T, Miller KC, Deeb G, Lee K, Chanan-Khan A (2010) Plasma cell leukaemia and other aggressive plasma cell malignancies. Br J Haematol 150(4):418–427

    Article  PubMed  Google Scholar 

  • Tancred TM, Belch AR, Reiman T, Pilarski LM, Kirshner J (2009) Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J Histochem Cytochem 57(3):239–247

    Article  PubMed  CAS  Google Scholar 

  • Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931

    Article  PubMed  CAS  Google Scholar 

  • Tricot G, Barlogie B, Jagannath S, Bracy D, Mattox S, Vesole DH et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86(11):4250–4256

    PubMed  CAS  Google Scholar 

  • Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD Jr et al (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 25(9):1121–1128

    Article  PubMed  Google Scholar 

  • Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM (2009) A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 113(22):5418–5422

    Article  PubMed  CAS  Google Scholar 

  • Yaccoby S (2010) Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol 149(3):311–321

    Article  PubMed  CAS  Google Scholar 

  • Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al (2007) Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 109(4):1692–1700

    Article  PubMed  CAS  Google Scholar 

  • Zoubeidi A, Rocha J, Zouanat FZ, Hamel L, Scarlata E, Aprikian AG et al (2009) The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol Cancer Res 7(1):142–155

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Dalton Ph.D., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shain, K.H., Dalton, W.S. (2012). Genetic and Environmental Determinants in Multiple Myeloma: Implications for Therapy. In: Tao, J., Sotomayor, E. (eds) Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics. Cancer Growth and Progression, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5028-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5028-9_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5027-2

  • Online ISBN: 978-94-007-5028-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics