Skip to main content

Structural Biology of Replication Initiation Factor Mcm10

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

Minichromosome maintenance protein 10 (Mcm10) is a non-enzymatic replication factor required for proper assembly of the eukaryotic replication fork. Mcm10 interacts with single-stranded and double-stranded DNA, DNA polymerase α and Mcm2-7, and is important for activation of the pre-replicative complex and recruitment of subsequent proteins to the origin at the onset of S-phase. In addition, Mcm10 has recently been implicated in coordination of helicase and polymerase activities during replication fork progression. The nature of Mcm10’s involvement in these activities, whether direct or indirect, remains unknown. However, recent biochemical and structural characterization of Mcm10 from multiple organisms has provided insights into how Mcm10 utilizes a modular architecture to act as a replisome scaffold, which helps to define possible roles in origin DNA melting, Pol α recruitment and coordination of enzymatic activities during elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apger J, Reubens M, Henderson L, Gouge CA, Ilic N, Zhou HH, Christensen TW (2010) Multiple functions for Drosophila Mcm10 suggested through analysis of two mcm10 mutant alleles. Genetics 185:1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Aves SJ, Tongue N, Foster AJ, Hart EA (1998) The essential Schizosaccharomyces pombe cdc23 DNA replication gene shares structural and functional homology with the Saccharomyces cerevisiae DNA43 (MCM10) gene. Curr Genet 34:164–171

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  PubMed  CAS  Google Scholar 

  • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385:176–181

    Article  PubMed  CAS  Google Scholar 

  • Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Bielinsky AK (2007) Human Mcm10 regulates the catalytic subunit of DNA polymerase α and prevents DNA damage during replication. Mol Biol Cell 18:4085–4095

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Yu X, Kasiviswanathan R, Shin JH, Kelman Z, Egelman EH (2005) Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J Mol Biol 346:389–394

    Article  PubMed  CAS  Google Scholar 

  • Christensen TW, Tye BK (2003) Drosophila MCM10 interacts with members of the prereplication complex and is required for proper chromosome condensation. Mol Biol Cell 14:2206–2215

    Article  PubMed  CAS  Google Scholar 

  • Cook CR, Kung G, Peterson FC, Volkman BF, Lei M (2003) A novel zinc finger is required for Mcm10 homocomplex assembly. J Biol Chem 278:36051–36058

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Ilves I, Tamberg N, Petojevic T, Nogales E, Botchan MR, Berger JM (2011) The structural basis for MCM2-7 helicase activation by GINS and Cdc45. NatStruct Mol Biol 18:471–477

    Article  CAS  Google Scholar 

  • Das-Bradoo S, Ricke RM, Bielinsky AK (2006) Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol 26:4806–4817

    Article  PubMed  CAS  Google Scholar 

  • Douglas NL, Dozier SK, Donato JJ (2005) Dual roles for Mcm10 in DNA replication initiation and silencing at the mating-type loci. Mol Biol Rep 32:197–204

    Article  PubMed  CAS  Google Scholar 

  • Dumas LB, Lussky JP, McFarland EJ, Shampay J (1982) New temperature-sensitive mutants of Saccharomyces cerevisiae affecting DNA replication. Mol Gen Genet 187:42–46

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg S, Korza G, Carson J, Liachko I, Tye BK (2009) Novel DNA binding properties of the Mcm10 protein from Saccharomyces cerevisiae. J Biol Chem 284:25412–25420

    Article  PubMed  CAS  Google Scholar 

  • Fien K, Hurwitz J (2006) Fission yeast Mcm10p contains primase activity. J Biol Chem 281:22248–22260

    Article  PubMed  CAS  Google Scholar 

  • Fien K, Cho YS, Lee JK, Raychaudhuri S, Tappin I, Hurwitz J (2004) Primer utilization by DNA polymerase α-primase is influenced by its interaction with Mcm10p. J Biol Chem 279:16144–16153

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS (2003) The structure and function of MCM from archaeal M. thermoautotrophicum. Nat Struct Biol 10:160–167

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RJ, Shen J, Gomez-Llorente Y, Martin CS, Carazo JM, Chen XS (2005) Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM. J Biol Chem 280:42405–42410

    Article  PubMed  CAS  Google Scholar 

  • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358–366

    Article  PubMed  CAS  Google Scholar 

  • Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K (2009) A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase α within the eukaryotic replisome. EMBO J 28:2992–3004

    Article  PubMed  CAS  Google Scholar 

  • Garg P, Stith CM, Majka J, Burgers PM (2005) Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase ζ. J Biol Chem 280:23446–23450

    Article  PubMed  CAS  Google Scholar 

  • Grallert B, Nurse P (1997) An approach to identify functional homologues and suppressors of genes in fission yeast. Curr Genet 32:27–31

    Article  PubMed  CAS  Google Scholar 

  • Gregan J, Lindner K, Brimage L, Franklin R, Namdar M, Hart EA, Aves SJ, Kearsey SE (2003) Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding. Mol Biol Cell 14:3876–3887

    Article  PubMed  CAS  Google Scholar 

  • Hart EA, Bryant JA, Moore K, Aves SJ (2002) Fission yeast Cdc23 interactions with DNA replication initiation proteins. Curr Genet 41:342–348

    Article  PubMed  CAS  Google Scholar 

  • Homesley L, Lei M, Kawasaki Y, Sawyer S, Christensen T, Tye BK (2000) Mcm10 and the MCM2-7 complex interact to initiate DNA synthesis and to release replication factors from origins. Genes Dev 14:913–926

    PubMed  CAS  Google Scholar 

  • Ilves I, Petojevic T, Pesavento JJ, Botchan MR (2010) Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37:247–258

    Article  PubMed  CAS  Google Scholar 

  • Im JS, Ki SH, Farina A, Jung DS, Hurwitz J, Lee JK (2009) Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci USA 106:15628–15632

    Article  PubMed  CAS  Google Scholar 

  • Izumi M, Yanagi K, Mizuno T, Yokoi M, Kawasaki Y, Moon KY, Hurwitz J, Yatagai F, Hanaoka F (2000) The human homolog of Saccharomyces cerevisiae Mcm10 interacts with replication factors and dissociates from nuclease-resistant nuclear structures in G(2) phase. Nucleic Acids Res 28:4769–4777

    Article  PubMed  CAS  Google Scholar 

  • Izumi M, Yatagai F, Hanaoka F (2001) Cell cycle-dependent proteolysis and phosphorylation of human Mcm10. J Biol Chem 276:48526–48531

    Article  PubMed  CAS  Google Scholar 

  • Jung NY, Bae WJ, Chang JH, Kim YC, Cho Y (2008) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the central zinc-binding domain of the human Mcm10 DNA replication factor. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:495–497

    Article  PubMed  Google Scholar 

  • Kawasaki Y, Hiraga S, Sugino A (2000) Interactions between Mcm10p and other replication factors are required for proper initiation and elongation of chromosomal DNA replication in Saccharomyces cerevisiae. Genes Cells 5:975–989

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Chang C, Song HK, Moon J, Yang JK, Kim HK, Kwon ST, Suh SW (2000) Crystal structure of NAD+-dependent DNA ligase: modular architecture and functional implications. EMBO J 19:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Seo YS, Hurwitz J (2003) The Cdc23 (Mcm10) protein is required for the phosphorylation of minichromosome maintenance complex by the Dfp1-Hsk1 kinase. Proc Natl Acad Sci USA 100:2334–2339

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Liachko I, Bouten R, Kelman Z, Tye BK (2010) Alternative mechanisms for coordinating polymerase α and MCM helicase. Mol Cell Biol 30:423–435

    Article  PubMed  CAS  Google Scholar 

  • Lei M, Kawasaki Y, Young MR, Kihara M, Sugino A, Tye BK (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 11:3365–3374

    Article  PubMed  CAS  Google Scholar 

  • Liachko I, Tye BK (2005) Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae. Genetics 171:503–515

    Article  PubMed  CAS  Google Scholar 

  • Liachko I, Tye BK (2009) Mcm10 mediates the interaction between DNA replication and silencing machineries. Genetics 181:379–391

    Article  PubMed  CAS  Google Scholar 

  • Liang DT, Forsburg SL (2001) Characterization of Schizosaccharomyces pombe mcm7 + and cdc23 + (MCM10) and interactions with replication checkpoints. Genetics 159:471–486

    PubMed  CAS  Google Scholar 

  • Maine GT, Sinha P, Tye BK (1984) Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385

    PubMed  CAS  Google Scholar 

  • Merchant AM, Kawasaki Y, Chen Y, Lei M, Tye BK (1997) A lesion in the DNA replication initiation factor Mcm10 induces pausing of elongation forks through chromosomal replication origins in Saccharomyces cerevisiae. Mol Cell Biol 17:3261–3271

    PubMed  CAS  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103:10236–10241

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Nurse P (1981) Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 182:119–124

    Article  PubMed  CAS  Google Scholar 

  • Okorokov AL, Waugh A, Hodgkinson J, Murthy A, Hong HK, Leo E, Sherman MB, Stoeber K, Orlova EV, Williams GH (2007) Hexameric ring structure of human MCM10 DNA replication factor. EMBO Rep 8:925–930

    Article  PubMed  CAS  Google Scholar 

  • Pacek M, Tutter AV, Kubota Y, Takisawa H, Walter JC (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 21:581–587

    Article  PubMed  CAS  Google Scholar 

  • Pape T, Meka H, Chen S, Vicentini G, van Heel M, Onesti S (2003) Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Rep 4:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Patel SS, Picha KM (2000) Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JF (2009) Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 139:719–730

    Article  PubMed  CAS  Google Scholar 

  • Ricke RM, Bielinsky AK (2004) Mcm10 regulates the stability and chromatin association of DNA polymerase α. Mol Cell 16:173–185

    Article  PubMed  CAS  Google Scholar 

  • Ricke RM, Bielinsky AK (2006) A conserved Hsp10-like domain in Mcm10 is required to stabilize the catalytic subunit of DNA polymerase α in budding yeast. J Biol Chem 281:18414–18425

    Article  PubMed  CAS  Google Scholar 

  • Robertson PD, Warren EM, Zhang H, Friedman DB, Lary JW, Cole JL, Tutter AV, Walter JC, Fanning E, Eichman BF (2008) Domain architecture and biochemical characterization of vertebrate Mcm10. J Biol Chem 283:3338–3348

    Article  PubMed  CAS  Google Scholar 

  • Robertson PD, Chagot B, Chazin WJ, Eichman BF (2010) Solution NMR structure of the C-terminal DNA binding domain of MCM10 reveals a conserved MCM motif. J Biol Chem 285:22942–22949

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SL, Cheng IH, Chai W, Tye BK (2004) Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae. J Mol Biol 340:195–202

    Article  PubMed  CAS  Google Scholar 

  • Shamoo Y, Friedman AM, Parsons MR, Konigsberg WH, Steitz TA (1995) Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376:362–366

    Article  PubMed  CAS  Google Scholar 

  • Sheu YJ, Stillman B (2006) Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol Cell 24:101–113

    Article  PubMed  CAS  Google Scholar 

  • Solomon NA, Wright MB, Chang S, Buckley AM, Dumas LB, Gaber RF (1992) Genetic and molecular analysis of DNA43 and DNA52: two new cell-cycle genes in Saccharomyces cerevisiae. Yeast 8:273–289

    Article  PubMed  CAS  Google Scholar 

  • Stauffer ME, Chazin WJ (2004) Structural mechanisms of DNA replication, repair, and recombination. J Biol Chem 279:30915–30918

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Nasmyth K (1998) Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J 17:5182–5191

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Umemori T, Hirai K, Muramatsu S, Kamimura Y, Araki H (2007) CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445:328–332

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA and DNA polymerase α. Mol Cell 5:617–627

    Article  PubMed  CAS  Google Scholar 

  • Warren EM, Vaithiyalingam S, Haworth J, Greer B, Bielinsky AK, Chazin WJ, Eichman BF (2008) Structural basis for DNA binding by replication initiator Mcm10. Structure 16:1892–1901

    Article  PubMed  CAS  Google Scholar 

  • Warren EM, Huang H, Fanning E, Chazin WJ, Eichman BF (2009) Physical interactions between Mcm10, DNA and DNA polymerase α. J Biol Chem 284:24662–24672

    Article  PubMed  CAS  Google Scholar 

  • Wawrousek KE, Fortini BK, Polaczek P, Chen L, Liu Q, Dunphy WG, Campbell JL (2010) Xenopus DNA2 is a helicase/nuclease that is found in complexes with replication proteins And-1/Ctf4 and Mcm10 and DSB response proteins Nbs1 and ATM. Cell Cycle 9:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Wohlschlegel JA, Dhar SK, Prokhorova TA, Dutta A, Walter JC (2002) Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45. Mol Cell 9:233–240

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Rochette PJ, Feyissa EA, Su TV, Liu Y (2009) MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO J 28:3005–3014

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Gregan J, Lindner K, Young H, Kearsey SE (2005) Nuclear distribution and chromatin association of DNA polymerase α-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol Biol 6:13

    Article  PubMed  CAS  Google Scholar 

  • Yardimci H, Loveland AB, Habuchi S, van Oijen AM, Walter JC (2010) Uncoupling of sister replisomes during eukaryotic DNA replication. Mol Cell 40:834–840

    Article  PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JF (2007) Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445:281–285

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase α to chromatin for initiation of DNA replication. Genes Dev 21:2288–2299

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Stillman B (2000) Assembly of a complex containing Cdc45p, replication protein A and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 20:3086–3096

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandt F. Eichman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Du, W., Stauffer, M.E., Eichman, B.F. (2012). Structural Biology of Replication Initiation Factor Mcm10. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_11

Download citation

Publish with us

Policies and ethics