Skip to main content

Multivariate Extreme Value Methods

  • Chapter
  • First Online:

Part of the book series: Water Science and Technology Library ((WSTL,volume 65))

Abstract

Multivariate extremes occur in several hydrologic and water resources problems. Despite their practical relevance, the real-life decision making as well as the number of designs based on an explicit treatment of multivariate variables is yet limited as compared to univariate analysis. A first problem arising when working in a multidimensional context is the lack of a “natural” definition of extreme values: essentially, this is due to the fact that different concepts of multivariate order and failure regions are possible. Also, in modeling multivariate extremes, central is the issue of dependence between the variables involved: again, several approaches are possible. A further practical problem is represented by the construction of multivariate Extreme Value models suitable for applications: the task is indeed difficult from a mathematical point of view. In addition, the calculation of multivariate Return Periods, quantiles, and design events, which represent quantities of utmost interest in applications, is rather tricky. In this Chapter we show how the use of Copulas may help in dealing with (and, possibly, solving) these problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander G (1954) Some aspects of time series in hydrology. J Inst Eng Aust 26196

    Google Scholar 

  • Bacchi B, Becciu G, Kottegoda N (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall. J Hydrol 155:225–236

    Article  Google Scholar 

  • Barbe P, Genest C, Ghoudi K, Rémillard B (1996) On Kendall’s process. J Multivar Anal 58(2):197–229

    Article  Google Scholar 

  • Belzunce F, Castaño A, Olvera-Cervantes A, Suárez-Llorens A (2007) Quantile curves and dependence structure for bivariate distributions. Comput Stat Data Anal 51(10):5112–5129

    Article  Google Scholar 

  • Berg D (2009) Copula goodness-of-fit testing: an overview and power comparison. Eur J Financ 15(7–8):675–701

    Article  Google Scholar 

  • Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Blomqvist N (1950) On a measure of dependence between two random variables. Ann Math Stat 21:593–600

    Article  Google Scholar 

  • Charpentier A (2006) Dependence structures and limiting results, with applications in finance and insurance. Ph.D. thesis, Katholieke Universiteit Leuven (Belgium)

    Google Scholar 

  • Chebana F, Ouarda TBMJ (2009a) Index flood-based multivariate regional frequency analysis. Water Resour Res 45:W10,435. doi: 10.1029/2008WR007490

    Article  Google Scholar 

  • Chebana F, Ouarda TBMJ (2009b) Multivariate quantiles in hydrological frequency analysis. Environmetrics. doi: 10.1002/env.1027

    Google Scholar 

  • Chebana F, Ouarda T (2011) Multivariate extreme value identification using depth functions. Environmetrics 22(3):441–455. doi: 10.1002/env.1089

    Article  Google Scholar 

  • Cherubini U, Romagnoli S (2009) Computing the volume of n-dimension copulas. Appl Math Financ 16(4):307–314

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London/ New York

    Google Scholar 

  • Coles S, Tawn J (1991) Modeling extreme multivariate events. J R Stat Soc B 53(2):377–392

    Google Scholar 

  • Coles S, Tawn J (1994) Statistical methods for multivariate extremes: an application to structural design. Appl Stat 43:1–48

    Article  Google Scholar 

  • Coles S, Heffernan J, Tawn J (1999) Dependence measures for extreme value analyses. Extremes 2(4):339–365

    Article  Google Scholar 

  • Cooley D (2009) Extreme value analysis and the study of climate change: a commentary on Wigley 1988. Clim Chang 97:77–83

    Article  Google Scholar 

  • Cox DR (1962) Renewal theory. Wiley, New York

    Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge series in statistical and probabilistic mathematics, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • De Haan L, Resnick S (1977) Limit theory for multivariate sample extremes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 40(4):317–337

    Article  Google Scholar 

  • Deheuvels P (1979) La fonction de dépendence empirique et ses propriétés. un test non paramétrique d’indépendence. Acad R Belg Bull Cl Sci 65(5):274–292

    Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. ASCE J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • De Michele C, Salvadori G, Passoni G, Vezzoli R (2007) A multivariate model of sea storms using copulas. Coast Eng 54:734–751

    Article  Google Scholar 

  • Devroye L (1986) Non-uniform random variate generation. Springer, New York

    Google Scholar 

  • DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11(3):189–228

    Article  Google Scholar 

  • Durante F (2008) Construction of non-exchangeable bivariate distribution functions. Stat Papers. In press

    Google Scholar 

  • Durante F, Salvadori G (2010) On the construction of multivariate extreme value models via copulas. Environmetrics 21:143–161

    Google Scholar 

  • Durante F, Quesada-Molina J, Úbeda-Flores M (2007) On a family of multivariate copulas for aggregation processes. Inf Sci 177(24):5715–5724

    Article  Google Scholar 

  • Embrechts P, McNeil A, Straumann D (2002) Correlation and dependence in risk management: properties and pitfalls. In: Risk management: value at risk and beyond. Cambridge University Press, Cambridge

    Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (2003) Modelling extremal events for insurance and finance, 4th edn. Springer, Berlin

    Google Scholar 

  • Falk M, Reiss RD (2005) On Pickands coordinates in arbitrary dimensions. J Multivar Anal 92:426–453

    Article  Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40(1):W01101. doi: 10. 1029/2003WR002456

    Article  Google Scholar 

  • Feller W (1971) An introduction to probability and its applications, vol 1, 3rd edn. Wiley, New York

    Google Scholar 

  • Frahm G (2006) On the extremal dependence coefficient of multivariate distributions. Stat Probab Lett 76:1470–1481

    Article  Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100

    Article  Google Scholar 

  • Fredericks G, Nelsen R (2007) On the relationship between Spearman’s rho and Kendall’s tau for pairs of continuous variables. J Stat Plan Inference 137:2143–2150

    Article  Google Scholar 

  • Galambos J (1987) The asymptotic theory of extreme order statistics, 2nd edn. Kreiger, Malabar

    Google Scholar 

  • Genest C, Favre A (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rivest L (1989) A characterization of Gumbel’s family of extreme value distributions. Stat Probab Lett 8:207–211

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Genest C, Rivest LP (2001) On the multivariate probability integral transformation. Stat Probab Lett 53(4):391–399

    Article  Google Scholar 

  • Genest C, Segers J (2009) Rank-based inference for bivariate Extreme Value copulas. Ann Stat 37(5B):2990–3022

    Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1998) Understanding relationships using copulas, by Edward Frees and Emiliano Valdez, January 1998. North Am Act J 2(3):143–149

    Google Scholar 

  • Genest C, Quessy JF, Rémillard B (2006) Goodness-of-fit procedures for copula models based on the probability integral transformation. Scand J Stat 33:337–366

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur Math Econ 44:199–213

    Article  Google Scholar 

  • Ghoudi K, Khoudraji A, Rivest L (1998) Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles. Can J Stat 26:187–197

    Article  Google Scholar 

  • Grenney W, Heyse E (1985) Suspended sediment – river flow analysis. J Environ Eng 111(6): 790–803

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Gudendorf G, Segers J (2010) Extreme-value copulas. In: Jaworski P, Durante F, Härdle W, Rychlik T (eds) Copula theory and its applications. Lecture notes in statistics – proceedings, vol 198. Springer, Berlin/Heidelberg, pp 127–145

    Google Scholar 

  • Herr H, Krzysztofowicz R (2005) Generic probability distribution of rainfall in space: the bivariate model. J Hydrol 306(1–2):234–263

    Article  Google Scholar 

  • Hosking J, Wallis J (1988) The effect of intersite dependence on regional flood frequency analysis. Water Resour Res 24(2):588–600

    Article  Google Scholar 

  • Hutchinson T, Lai C (1990) Continuous bivariate distributions, emphasising applications. Rumsby Scientific Publishing, Adelaide

    Google Scholar 

  • Jaworski P, Durante F, Haerdle W, Rychlik T (eds) (2010) Copula theory and its applications. Lecture notes in statistics – proceedings, vol 198. Springer, Berlin/Heidelberg

    Google Scholar 

  • Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Joe H (1993) Parametric families of multivariate distributions with given margins. J Multivar Anal 46:262–282

    Article  Google Scholar 

  • Joe H (1994) Multivariate extreme-value distributions with applications to environmental data. Can J Stat 22:47–64

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, London

    Google Scholar 

  • Johnson M (1987) Multivariate statistical simulation. Wiley, New York

    Google Scholar 

  • Journel A, Alabert F (1988) Non-gaussian data expansion in the earth sciences. TERRA Nova 1:123–134

    Article  Google Scholar 

  • Juri A, Wüthrich M (2002) Copula convergence theorems for tail events. Insur Math Econ 24

    Google Scholar 

  • Katz R (2010) Statistics of extremes in climate change. Clim Chang 100:71–76

    Article  Google Scholar 

  • Keef C, Svensson C, Tawn J (2009) Spatial dependence in extreme river flows and precipitation for Great Britain. J Hydrol 378(3–4):240–252

    Article  Google Scholar 

  • Kendall M (1937) A new measure of rank correlation. Biometrika 6:83–93

    Google Scholar 

  • Khoudraji A (1995) Contributions à l’étude des copules et à la modélisation des valeurs extrêmes bivariées. Ph.D. thesis, Université de Laval, Québec (Canada)

    Google Scholar 

  • Kim TW, Valdes J, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. ASCE J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Stat Sin 21(2):841–871

    Article  Google Scholar 

  • Kottegoda N, Natale L (1994) Two-component log-normal distribution of irrigation-affected low-flows. J Hydrol 158:187–199

    Article  Google Scholar 

  • Kruskal W (1958) Ordinal measures of association. J Am Stat Assoc 53:814–861

    Article  Google Scholar 

  • Liebscher E (2008) Construction of asymmetric multivariate copulas. J Multivar Anal 99: 2234–2250

    Article  Google Scholar 

  • Mai J, Scherer M (2010) Bivariate extreme-value copulas with discrete pickands dependence measure. Extremes 14:311–324

    Article  Google Scholar 

  • Marshall A, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44

    Article  Google Scholar 

  • Marshall A, Olkin I (1983) Domains of attraction of multivariate Extreme Value distributions. Ann Probab 11(1):168–177

    Article  Google Scholar 

  • Marshall A, Olkin I (1988) Families of multivariate distributions. J Am Stat Assoc 83(403): 834–841

    Article  Google Scholar 

  • Nelsen R (1996) Nonparametric measures of multivariate association. In: Distributions with fixed marginals and related topics (Seattle, WA, 1993). IMS lecture notes monograph series, vol 28. Institute of mathematical statistics. Hayward, pp 223–232

    Google Scholar 

  • Nelsen R (1997) Dependence and order in families of Archimedean copulas. J Multivar Anal 60:111–122

    Article  Google Scholar 

  • Nelsen R (2006) An introduction to copulas, 2nd edn. Springer, New York

    Google Scholar 

  • Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2001) Distribution functions of copulas: a class of bivariate probability integral transforms. Stat Probab Lett 54(3):277–282

    Article  Google Scholar 

  • Nelsen RB, Quesada-Molina JJ, Rodríguez-Lallena JA, Úbeda-Flores M (2003) Kendall distribution functions. Stat Probab Lett 65(3):263–268

    Article  Google Scholar 

  • Pickands J (1981) Multivariate Extreme Value distributions. Bull Int Stat Inst 49:859–878

    Google Scholar 

  • Pons F (1992) Regional flood frequency analysis based on multivariate lognormal models. Ph.D. thesis, Colorado State University, Fort Collins

    Google Scholar 

  • Poulin A, Huard D, Favre A, Pugin S (2007) On the importance of the tail dependence in bivariate frequency analysis. ASCE J Hydrol Eng 12(4):394–403. doi: 10.1061/(ASCE) 1084-0699(2007)12:4(394). (Special Issue on Copulas in Hydrology)

    Article  Google Scholar 

  • Press W, Flannery B, Teukolsky S, Vetterling W (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Raynal-Villasenor J, Salas J (1987) Multivariate extreme value distributions in hydrological analyses. In: IAHS (ed) Water for the future: hydrology in perspective, vol 164, pp 111–119

    Google Scholar 

  • Robert C (2007) The bayesian choice, 2nd edn. Springer, New York

    Google Scholar 

  • Rohatgi V (1976) An introduction to probability theory and mathematical statistics. Wiley, New York

    Google Scholar 

  • Rootzén H, Tajvidi N (2006) Multivariate generalized Pareto distributions. Bernoulli 12(5): 917–930

    Article  Google Scholar 

  • Russo D (2009) On probability distribution of hydraulic conductivity in variably saturated bimodal heterogeneous formations. J Vadose Zone 8:611–622

    Article  Google Scholar 

  • Salvadori G (2004) Bivariate return periods via 2-copulas. Stat Methodol 1:129–144

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via Copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40:W12511

    Article  Google Scholar 

  • Salvadori G, De Michele C (2010) Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour Res 46:W10501

    Article  Google Scholar 

  • Salvadori G, De Michele C (2011) Estimating strategies for multiparameter multivariate extreme value copulas. Hydrol Earth Syst Sci 15:141–150

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda N, Rosso R (2007) Extremes in nature. An approach using copulas. Water science and technology library, vol 56. Springer, Dordrecht

    Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci Discuss 15:3293–3305. doi: 10.5194/ hess-15-3293-2011

    Article  Google Scholar 

  • Scarsini M (1984) On measures of concordance. Stochastica 8:201–218

    Google Scholar 

  • Schmid F, Schmidt R (2007a) Multivariate extensions of Spearman’s rho and related statistics. Stat Probab Lett 77(4):407–416

    Article  Google Scholar 

  • Schmid F, Schmidt R (2007b) Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence. Metrika 66:323–354

    Article  Google Scholar 

  • Schmid F, Schmidt R (2007c) Multivariate conditional versions of Spearman’s rho and related measures of tail dependence. J Multivar Anal 98(6):1123–1140

    Article  Google Scholar 

  • Schmidt R (2003) Dependencies of extreme events in finance, modelling, statistics and data analysis. Ph.D. thesis, Universität Ulm, Fakultät für Mathematik und Wirtschaftswissenschaften

    Google Scholar 

  • Schweizer B, Wolff E (1981) On nonparametric measures of dependence for random variables. Ann Stat 9:879–885

    Article  Google Scholar 

  • Serfling R (2002) Quantile functions for multivariate analysis: approaches and applications. Stat Neerl 56(2):214–232

    Article  Google Scholar 

  • Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math Tokyo 11:195–210

    Article  Google Scholar 

  • Singh V (ed) (1986) Hydrologic frequency modeling. Reidel, Dordrecht

    Google Scholar 

  • Singh V, Jain S, Tyagi A (2007) Risk and reliability analysis. ASCE Press, Reston

    Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Public Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Smith J (1988) Decision analysis: a bayesian approach. Chapman and Hall, London/New York

    Google Scholar 

  • Stedinger J (1983) Estimating a regional flood frequency distribution. Water Resour Res 19(2): 503–510

    Article  Google Scholar 

  • Tawn J (1990) Modelling multivariate extreme value distributions. Biometrika 77(2):245–253

    Article  Google Scholar 

  • Titterington D, Smith A, Makov U (1985) Statistical analysis of finite mixture distributions. Wiley, New Jersey

    Google Scholar 

  • Vandenberghe S, Verhoest NEC, Buyse E, Baets BD (2010) A stochastic design rainfall generator based on copulas and mass curves. Hydrol Earth Syst Sci 14:2429–2442

    Article  Google Scholar 

  • Wigley T (1988) The effect of changing climate on the frequency of absolute extreme events. Clim Monit 17:44–55. Reprinted in (2009) Clim Chang 97:67–76

    Google Scholar 

  • Wilks D (1998) Multisite generalization of a daily stochastic precipitation generation model. J Hydrol 210:178–191

    Article  Google Scholar 

  • Yue S (2000) The Gumbel logistic model for representing a multivariate storm event. Adv Water Resour 24:179–185

    Article  Google Scholar 

  • Zhang L (2005) Multivariate hydrological frequency analysis and risk mapping. Ph.D. thesis, Louisiana State University, Baton Rouge

    Google Scholar 

Download references

Acknowledgements

The Authors thank C. Sempi (Università del Salento, Lecce, Italy) and F. Durante (Università di Bozen–Bolzano, Bolzano, Italy) for invaluable helpful discussions and suggestions, and M. Pini (Università di Pavia, Pavia, Italy) for software recommendations. The excellent and constructive review of an anonymous Referee is also gratefully acknowledged. [G.S.] The research was partially supported by the Italian M.I.U.R. via the project “Metodi stocastici in finanza matematica”. The support of “Centro Mediterraneo Cambiamenti Climatici” (CMCC – Lecce, Italy) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfausto Salvadori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salvadori, G., De Michele, C. (2013). Multivariate Extreme Value Methods. In: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S. (eds) Extremes in a Changing Climate. Water Science and Technology Library, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4479-0_5

Download citation

Publish with us

Policies and ethics