Skip to main content

Influence of Solar Radiation on the Diurnal and Seasonal Variability of O3 and H2O in the Stratosphere and Lower Mesosphere, Based on Continuous Observations in the Tropics and the High Arctic

  • Chapter
Book cover Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

During the CAWSES DFG (German Research Association) priority program measurements of stratospheric and mesospheric O3 using ground based millimeterwave radiometry have been established and analyzed. Instruments have been operated at two different locations, at Mérida, Venezuela, a high altitude tropic station and at Ny Ålesund, Spitsbergen, an Arctic station. Additionally, data obtained from the millimeterwave radiometer based at Kiruna, Sweden, have been used for an analysis of the 5-day planetary wave.

Measurements of O3 have yielded short term variations in the stratosphere and mesosphere, i.e. diurnal variations. Discrepancies between measured and modeled diurnal amplitude have been found and partially explained.

H2O measurements are more difficult than O3 measurements, as a result of its weak emission and strong tropospheric absorption. Nevertheless considerable effort has been put into the enhancement of H2O measurements using ground based millimeterwave radiometry and the suitability of such measurements could be demonstrated in a campaign at the Schneefernerhaus, Germany (Zugspitze).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Institute for Meteorology and Climate Research.

  2. 2.

    Institute of Environmental Research.

  3. 3.

    Institute of Space Physics, www.irf.se.

  4. 4.

    www.awi.de.

  5. 5.

    www.institut-polaire.fr.

  6. 6.

    www.ndacc.org.

References

  • Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., & Shettle, E. P. (1986).AFGL atmospheric constituent profiles (0–120 km) ( Environmental Research Papers, No. 954, Technical Report AFGL-TR-86-0110). Air Force Geophysics Laboratory.

    Google Scholar 

  • Belova, A., Kirkwood, S., Raffalski, U., Kopp, G., Hochschild, G., & Urban, J. (2008). Five-day planetary waves as seen by the Odin satellite and the ground-based Kiruna millimeter wave radiometer in January–March 2005. Canadian Journal of Physics, 86, 459–466. doi:10.1139/P07-172.

    Article  Google Scholar 

  • Berg, H., Krupa, R., Hochschild, G., Kopp, G., & Kuntz, M. (1998). Millimeterwave radiometer with adjustable internal calibration load for high resolution measurements of stratospheric constituents. In Proceedings of 2nd ESA workshop on millimetre wave technology and applications: antennas, circuits and systems (pp. 372–377).

    Google Scholar 

  • Boyd, I. S., Parrish, A. D., Froidevaux, L., von Clarmann, T., Kyrölä, E., Russell III, J. M., & Zawodny, J. M. (2007). Ground-based microwave ozone radiometer measurements compared with Aura-MLS v2.2 and other instruments at two Network for Detection of Atmospheric Composition Change sites. Journal of Geophysical Research, 112, D24S33. doi:10.1029/2007JD008720.

    Article  Google Scholar 

  • Brasseur, G., & Solomon, S. (2005). Aeronomy of the middle atmosphere (3rd ed.). Berlin: Springer.

    Google Scholar 

  • Bühler, S., Eriksson, P., Kuhn, T., von Engeln, A., & Verdes, C. (2005). ARTS, the atmospheric radiative transfer simulator. Journal of Quantitative Spectroscopy & Radiative Transfer, 91, 65–93. doi:10.1016/j.jqsrt.2004.05.051.

    Article  Google Scholar 

  • Chapman, S. (1930). On ozone and atomic oxygen in the upper atmosphere. Philosophical Magazine, 10(64), 369–383.

    Google Scholar 

  • Connor, B. J., de Zafra, R. L., Solomon, P. M., Parrish, A., Barrett, J. W., & Jaramillo, M. (1987). Nitrous oxid in the tropical middle atmosphere, observed by ground-based mm-wave spectrometry. Geophysical Research Letters, 14, 1254–1257.

    Article  Google Scholar 

  • Eriksson, P., Jiménez, C., & Bühler, S. A. (2005). Qpack, a general tool for instrument simulation and retrieval work. Journal of Quantitative Spectroscopy & Radiative Transfer, 91, 47–64. doi:10.1016/j.jqsrt.2004.05.050.

    Article  Google Scholar 

  • Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210. doi:10.1038/315207a0.

    Article  Google Scholar 

  • Flury, T., Hocke, K., Haefele, A., Kämpfer, N., & Lehmann, R. (2009). Ozone depletion, water vapor increase, and psc generation at midlatitudes by the 2008 major stratospheric warming. Journal of Geophysical Research, 114, D18302. doi:10.1029/2009JD011940.

    Article  Google Scholar 

  • Golchert, S., Hochschild, G., & Gross, J. (2010). Middle-atmospheric water vapour profiles above the Zugspitze obtained with a new ground-based 22 GHz spectroradiometer. In 11th specialist meeting on microwave radiometry and remote sensing of the environment (MicroRad) (pp. 152–154). doi:10.1109/MICRORAD.2010.5559570.

    Chapter  Google Scholar 

  • Golchert, S. H. W. (2010). Stratospheric water vapour in the tropics. Ph.D. thesis, Universität Bremen.

    Google Scholar 

  • Haefele, A., De Wachter, E., Hocke, K., Kämpfer, N., Nedoluha, G. E., Gomez, R. M., Eriksson, P., Forkman, P., Lambert, A., & Schwartz, M. J. (2009). Validation of ground-based microwave radiometers at 22 GHz for stratospheric and mesospheric water vapor. Journal of Geophysical Research, 114, D23305. doi:10.1029/2009JD011997.

    Article  Google Scholar 

  • Hocke, K., Kämpfer, N., Ruffieux, D., Froidevaux, L., Parrish, A., Boyd, I., von Clarmann, T., Steck, T., Timofeyev, Y. M., Polyakov, A. V., & Kyrölä, E. (2007). Comparison and synergy of stratospheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA. Atmospheric Chemistry and Physics, 7, 4117–4131.

    Article  Google Scholar 

  • Hoffmann, C. (2008). Optimierung der Mikrowellenradiometer OzoRAM und WaRAM. Master’s thesis, Universität Bremen.

    Google Scholar 

  • Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., & Notholt, J. (2011). Observation of strato-mesospheric CO above Kiruna with ground-based microwave radiometry----retrieval and satellite comparison. Atmospheric Measurement Techniques, 4, 2389–2408. doi:10.5194/amt-4-2389-2011.

    Article  Google Scholar 

  • Jaramillo, M., de Zafra, R. L., Parrish, A., & Solomon, P. M. (1988). MM-wave observations of stratospheric HCN at tropical latitudes. Geophysical Research Letters, 15, 265–268.

    Article  Google Scholar 

  • Klein, U., Barry, B., Lindner, K., Wohltmann, I., & Künzi, K. F. (2000). Winter and spring observations of stratospheric chlorine monoxide from Ny-Ålesund, Spitsbergen in 1997/98 and 1998/99. Geophysical Research Letters, 27(24), 4093–4097.

    Article  Google Scholar 

  • Klein, U., Wohltmann, I., Lindner, K., & Künzi, K. F. (2002). Ozone depletion and chlorine activation in the Arctic winter 1999/2000 observed in Ny-Ålesund. Journal of Geophysical Research, 107(D20), 8288. doi:10.1029/2001JD000543.

    Article  Google Scholar 

  • Kopp, G., Calderón, S. M., Gross, M. J., Hochschild, G. G., Hoffmann, C. G. P., Notholt, J. J., & Sinnhuber, M. (2009). Inner-tropical ozone measurements at the Mérida Atmospheric Research Station (MARS) using ground-based microwave radiometry. International Journal of Remote Sensing, 30(15–16), 4019–4032.

    Article  Google Scholar 

  • Krupa, R., Hochschild, G., Fischer, H., & Wiesbeck, W. (1998). Balanced calibration technique with an internal reference load for ground based millimeter wave radiometry. In IEEE international geoscience and remote sensing symposium proceedings (pp. 387–389).

    Google Scholar 

  • Kuntz, M., Kopp, G., Berg, H., Hochschild, G., & Krupa, R. (1999). Joint retrieval of atmospheric constituent profiles from ground-based millimeterwave measurements: ClO, HNO3, N2O, and O3. Journal of Geophysical Research, 104(D11), 13981–13992.

    Article  Google Scholar 

  • Künzi, K. F., & Carlson, E. R. (1982). Atmospheric CO mixing ratio profiles determined from ground based measurements of the J=1>0 and J=2>1 emission lines. Journal of Geophysical Research, 87, 7235–7241.

    Article  Google Scholar 

  • Lary, D. J. (1997). Catalytic destruction of stratospheric ozone. Journal of Geophysical Research, 102(D17), 21515–21526.

    Article  Google Scholar 

  • Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., & Livesey, N. J. (2009). Aura microwave limb sounder observations of dynamics and transport during the record-breaking 2009 arctic stratospheric major warming. Geophysical Research Letters, 36, L12815. doi:10.1029/2009GL038586.

    Article  Google Scholar 

  • Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., Thacker, D. L., Waltman, W. B., & Pauls, T. A. (1995). Ground-based measurements of water vapor in the middle atmosphere. Journal of Geophysical Research, 100(D2), 2927–2939.

    Article  Google Scholar 

  • Palm, M. (2006). Extension and combination of existing remote-sensing instruments. Ph.D. thesis, Universität Bremen.

    Google Scholar 

  • Palm, M., Hoffmann, C. G., Golchert, S. H. W., & Notholt, J. (2010). The ground-based MW radiometer OZORAM on Spitsbergen—description and status of stratospheric and mesospheric O3-measurements. Atmospheric Measurement Techniques, 3, 1533–1545. doi:10.5194/amt-3-1533-2010.

    Article  Google Scholar 

  • Parrish, A., de Zafra, R. L., Solomon, P. M., Barrett, J. W., & Carlson, E. R. (1981). Chlorine oxide in the stratospheric ozone layer: ground-based detection and measurement. Science, 211, 1158–1161.

    Article  Google Scholar 

  • Penfield, H., Litvak, M. M., Gottlieb, C. A., & Lillley, A. E. (1976). Mesospheric ozone measured from ground-based millimeter wave observations. Journal of Geophysical Research, 81(34), 6115–6120.

    Article  Google Scholar 

  • Raffalski, U., Hochschild, G., Kopp, G., & Urban, J. (2005). Evolution of stratospheric ozone during winter 2002/2003 as observed by a ground-based millimetre wave radiometer at Kiruna, Sweden. Atmospheric Chemistry and Physics, 5, 1399–1407.

    Article  Google Scholar 

  • Randall, C. E., Harvey, V. L., Manney, G. L., Orsolini, Y., Codrescu, M., Sioris, C., Brohede, S., Haley, C. S., Gordley, L. L., Zawodny, J. M., & Russell III, J. M. (2005). Stratospheric effects of energetic particle precipitation in 2003–2004. Geophysical Research Letters, 32, L05802. doi:10.1029/2004GL022003.

    Article  Google Scholar 

  • Rodgers, C. D. (2000). Inverse methods for atmospheric sounding. Singapore: World Scientific.

    Book  Google Scholar 

  • Rosenkranz, P. W. (1998). Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Science, 33, 919–928. doi:10.1029/98RS01182, correction in 34, 1025, 1999.

    Article  Google Scholar 

  • Russell III, J. M., Solomon, S., Gordley, L. L., Remsberg, E. E., & Callis, L. B. (1984). The variability of stratospheric and mesospheric NO2 observed by LIMS in the polar winter night. Journal of Geophysical Research, 89(D5), 7267–7275.

    Article  Google Scholar 

  • Sinnhuber, M., Burrows, J. P., Chipperfield, M. P., Jackman, C. H., Kallenrode, M.-B., Künzi, K. F., & Quack, M. (2003). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophysical Research Letters, 30(15), 1818. doi:10.1029/2003GL017265.

    Article  Google Scholar 

  • Solomon, S., Rusch, D., Gerard, J., Reid, G., & Crutzen, P. (1981). The effect of particle-precipitation events on the neutral and ion chemistry of the middle atmosphere. 2. Odd hydrogen. Planetary and Space Science, 29(8), 885–892.

    Article  Google Scholar 

  • Solomon, S., Mount, G. H., & Zawodny, J. M. (1984). Measurements of stratospheric NO2 from the solar mesosphere explorer satellite. 2. General morphology of observed NO2 and derived N2O5. Journal of Geophysical Research, 89(D5), 7317–7321.

    Article  Google Scholar 

  • Straub, C., Murk, A., Kämpfer, N., Golchert, S. H. W., Hochschild, G., Hallgren, K., & Hartogh, P. (2011). ARIS-Campaign: intercomparison of three ground based 22 GHz radiometers for middle atmospheric water vapor at the Zugspitze in winter 2009. Atmospheric Measurement Techniques, 4, 1979–1994. doi:10.5194/amt-4-1979-2011.

    Article  Google Scholar 

  • Waters, J. W. (1973). Ground-based measurement of millimetre-wavelength emission by upper stratospheric O2. Nature, 242.

    Google Scholar 

  • Waters, J. W., Wilson, W. J., & Shimabukuro, F. I. (1976). Microwave measurement of mesospheric carbon-monoxide. Science, 191(4232), 1174–1175.

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this chapter was supported by the DFG in the priority program CAWSES with the projects SACOSAT I, II and III and by the EU within the TASTE Project.

The German polar research institute, AWI, and the French polar research institute, IPEV, operate the AWIPEV research base and provide logistic support for the millimeterwave measurements on Spitsbergen.

The personal at the AWIPEV research base performed numerous tasks in maintaining and keeping the instruments running.

The authors acknowledge the support of Environmental Research Station Schneefernerhaus—UFS, Universidad de Los Andes (Mérida, Venezuela), Sistema Teleférico de Mérida and Instituto Nacional de Parques (Venezuela).

ECMWF operational data used in this work have been provided by ECMWF.

The EOS MLS data used in this study were acquired as part of the activities of NASA’s Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC).

The TIMED-SABER data were retrieved from ftp://saber.gats-inc.com/. We thank the science and data processing team of TIMED-SABER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Palm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palm, M., Golchert, S.H.W., Sinnhuber, M., Hochschild, G., Notholt, J. (2013). Influence of Solar Radiation on the Diurnal and Seasonal Variability of O3 and H2O in the Stratosphere and Lower Mesosphere, Based on Continuous Observations in the Tropics and the High Arctic. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_8

Download citation

Publish with us

Policies and ethics