Skip to main content

Plant Polyphenols and Their Role in Cancer Prevention and Chemotherapy

  • Chapter
  • First Online:
Nutrition, Diet and Cancer

Abstract

Chemoprevention has been proposed as the good tool to target these high-risk cancer patients. Among various identified chemopreventive agents, plant polyphenols (PPs) have been shown to be safe and highly effective in inhibiting of carcinogen-induced mutagenesis and tumorigenesis in bioassays and animal models for different target organ sites. The compounds derived from the plants are of considerable interest among oncologists. PPs have been studied for their chemopreventive and chemotherapeutic properties against human cancer, including green tea polyphenols, genistein (found in soy), apigenin (celery, parsley), luteolin (broccoli), quercetin (onions), kaempferol (broccoli, grapefruits), curcumin (turmeric), etc. Whilst such naturally occurring polyphenols have been the subject of numerous mechanistic studies in cells, information on their clinical properties, which might help assess their promise as human cancer chemopreventive agents, is scarce. The more we discuss their molecular mechanisms and cellular targets, the better we could utilize these “natural gifts” for the prevention and treatment of human cancers. The abundance of flavonoids and related phenolics in the plant kingdom makes it possible that several hitherto uncharacterised agents with cancer preventive potential are still to be identified,whichmay constitute attractive alternatives to currently used chemopreventive drugs. In this article, the effective PPs against human cancers will also be discussed, with more emphases on the basic conceptions of phenolics with strong antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–208

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  PubMed  CAS  Google Scholar 

  • Araujo JR, Goncalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87

    Article  PubMed  CAS  Google Scholar 

  • Augustin K, Blank R, Boesch-Saadatmandi C, Frank J, Wolffram S, Rimbach G (2008) Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs. J Anim Physiol Anim Nutr (Berl) 92:705–711

    Article  CAS  Google Scholar 

  • Baek SJ, Wilson LC, Eling TE (2002) Resveratrol enhances the expression of non-steroidal anti-inflammatory drug-activated gene (NAG-1) by increasing the expression of p53. Carcinogenesis 23:425–434

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian S, Efimova T, Eckert RL (2002) Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes. J Biol Chem 277:1828–1836

    Article  PubMed  CAS  Google Scholar 

  • Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7:812–821

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Manna S, Saha P, Panda CK, Das S (2005) Black tea polyphenols suppress cell proliferation and induce apoptosis during benzo(a)pyrene-induced lung carcinogenesis. Eur J Cancer Prev 14:215–221

    Article  PubMed  CAS  Google Scholar 

  • Baumann J, von Bruchhausen F, Wurm G (1980) Flavonoids and related compounds as inhibition of arachidonic acid peroxidation. Prostaglandins 20:627–639

    Article  PubMed  CAS  Google Scholar 

  • Beedanagari SR, Bebenek I, Bui P, Hankinson O (2009) Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes. Toxicol Sci 110:61–67

    Article  PubMed  CAS  Google Scholar 

  • Beltz LA, Bayer DK, Moss AL, Simet IM (2006) Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med Chem 6:389–406

    Article  PubMed  CAS  Google Scholar 

  • Bennani H, Drissi A, Giton F, Kheuang L, Fiet J, Adlouni A (2007) Antiproliferative effect of polyphenols and sterols of virgin argan oil on human prostate cancer cell lines. Cancer Detect Prev 31:64–69

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  • Carbo N, Costelli P, Baccino FM, Lopez-Soriano FJ, Argiles JM (1999) Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. Biochem Biophys Res Commun 254:739–743

    Article  PubMed  CAS  Google Scholar 

  • Chainy GB, Manna SK, Chaturvedi MM, Aggarwal BB (2000) Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-kappaB, AP-1, JNK, MAPKK and apoptosis. Oncogene 19:2943–2950

    Article  PubMed  CAS  Google Scholar 

  • Chang TK, Chen J, Lee WB (2001) Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther 299:874–882

    PubMed  CAS  Google Scholar 

  • Chen W, Dong Z, Valcic S, Timmermann BN, Bowden GT (1999) Inhibition of ultraviolet B–induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (-)-epigallocatechin gallate in a human keratinocyte cell line. Mol Carcinog 24:79–84

    Article  PubMed  CAS  Google Scholar 

  • Chen DZ, Qi M, Auborn KJ, Carter TH (2001a) Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16-transgenic preneoplastic cervical epithelium. J Nutr 131:3294–3302

    PubMed  CAS  Google Scholar 

  • Chen YC, Shen SC, Chen LG, Lee TJ, Yang LL (2001b) Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem Pharmacol 61:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Ganapathy S, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS One 5:e15288

    Article  PubMed  CAS  Google Scholar 

  • Chung JY, Park JO, Phyu H, Dong Z, Yang CS (2001) Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-)-epigallocatechin-3-gallate and theaflavin-3,3′-digallate. FASEB J 15:2022–2024

    PubMed  CAS  Google Scholar 

  • Ciolino HP, Yeh GC (2001) The effects of resveratrol on CYP1A1 expression and aryl hydrocarbon receptor function in vitro. Adv Exp Med Biol 492:183–193

    Article  PubMed  CAS  Google Scholar 

  • Ciolino HP, Daschner PJ, Yeh GC (1998) Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 58:5707–5712

    PubMed  CAS  Google Scholar 

  • Coates EM, Popa G, Gill CI, McCann MJ, McDougall GJ, Stewart D, Rowland I (2007) Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J Carcinog 6:4

    Article  PubMed  CAS  Google Scholar 

  • Covas MI, Nyyssonen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, Gaddi A, de la Torre R, Mursu J, Baumler H, Nascetti S, Salonen JT, Fito M, Virtanen J, Marrugat J (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145:333–341

    PubMed  CAS  Google Scholar 

  • D’Alessandro T, Prasain J, Benton MR, Botting N, Moore R, Darley-Usmar V, Patel R, Barnes S (2003) Polyphenols, inflammatory response, and cancer prevention: chlorination of isoflavones by human neutrophils. J Nutr 133:3773S–3777S

    PubMed  Google Scholar 

  • D’Archivio M, Santangelo C, Scazzocchio B, Vari R, Filesi C, Masella R, Giovannini C (2008) Modulatory effects of polyphenols on apoptosis induction: relevance for cancer prevention. Int J Mol Sci 9:213–228

    Article  PubMed  Google Scholar 

  • Dai GJ, Jin HY, Ding YJ, Xia JG, Liu XF, Liu F, Tan XZ, Geng JX (2008) Anticancer effects of tea polyphenols on colorectal cancer with microsatellite instability in nude mice. Zhong Xi Yi Jie He Xue Bao 6:1263–1266

    Article  PubMed  CAS  Google Scholar 

  • Dashwood RH (2007) Frontiers in polyphenols and cancer prevention. J Nutr 137:267S–269S

    PubMed  CAS  Google Scholar 

  • De Ledinghen V, Monvoisin A, Neaud V, Krisa S, Payrastre B, Bedin C, Desmouliere A, Bioulac-Sage P, Rosenbaum J (2001) Trans-resveratrol, a grapevine-derived polyphenol, blocks hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells. Int J Oncol 19:83–88

    PubMed  Google Scholar 

  • Delgado ME, Haza AI, Arranz N, Garcia A, Morales P (2008) Dietary polyphenols protect against N-nitrosamines and benzo(a)pyrene-induced DNA damage (strand breaks and oxidized purines/pyrimidines) in HepG2 human hepatoma cells. Eur J Nutr 47:479–490

    Article  PubMed  CAS  Google Scholar 

  • Dong Z (2000) Effects of food factors on signal transduction pathways. Biofactors 12:17–28

    Article  PubMed  CAS  Google Scholar 

  • Dryden GW, Song M, McClain C (2006) Polyphenols and gastrointestinal diseases. Curr Opin Gastroenterol 22:165–170

    Article  PubMed  CAS  Google Scholar 

  • Duthie GG, Duthie SJ, Kyle JA (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13:79–106

    Article  PubMed  CAS  Google Scholar 

  • Edderkaoui M, Odinokova I, Ohno I, Gukovsky I, Go VL, Pandol SJ, Gukovskaya AS (2008) Ellagic acid induces apoptosis through inhibition of nuclear factor kappa B in pancreatic cancer cells. World J Gastroenterol 14:3672–3680

    Article  PubMed  CAS  Google Scholar 

  • Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868

    Article  PubMed  CAS  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy S, Chen Q, Singh KP, Shankar S, Srivastava RK (2010) Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One 5:e15627

    Article  PubMed  CAS  Google Scholar 

  • Gerhauser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu GY, Sitthimonchai S, Frank N (2003) Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat Res 523–524:163–172

    PubMed  Google Scholar 

  • Gorlach S, Wagner W, Podsedek A, Sosnowska D, Dastych J, Koziolkiewicz M (2011) Polyphenols from Evening Primrose ( Oenothera paradoxa ) Defatted Seeds Induce Apoptosis in Human Colon Cancer Caco-2 Cells. J Agric Food Chem 59(13):6985–6997

    Article  PubMed  CAS  Google Scholar 

  • Gu M, Dhanalakshmi S, Mohan S, Singh RP, Agarwal R (2005) Silibinin inhibits ultraviolet B radiation-induced mitogenic and survival signaling, and associated biological responses in SKH-1 mouse skin. Carcinogenesis 26:1404–1413

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Ahmad N, Nieminen AL, Mukhtar H (2000) Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Toxicol Appl Pharmacol 164:82–90

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Sherratt HS (1961) Plant polyphenols. 3. Flavonoids in genotypes of Primula sinensis. Biochem J 78:298–306

    PubMed  CAS  Google Scholar 

  • Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat Prod Rep 18:310–333

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Smith TJ, Ho CT, August DA, Yang CS (2001) Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem Pharmacol 62:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Huang C, Ma WY, Goranson A, Dong Z (1999) Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20:237–242

    Article  PubMed  CAS  Google Scholar 

  • Hung MW, Shiao MS, Tsai LC, Chang GG, Chang TC (2003) Apoptotic effect of caffeic acid phenethyl ester and its ester and amide analogues in human cervical cancer ME180 cells. Anticancer Res 23:4773–4780

    PubMed  CAS  Google Scholar 

  • Imai K, Nakachi K (1995) Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 310:693–696

    Article  PubMed  CAS  Google Scholar 

  • Inglett GE, Chen D (2011) Contents of phenolics and flavonoids and antioxidant activities in skin, pulp, and seeds of miracle fruit. J Food Sci 76:C479–C482

    Article  PubMed  CAS  Google Scholar 

  • Ivanova D, Gerova D, Chervenkov T, Yankova T (2005) Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol 96:145–150

    Article  PubMed  CAS  Google Scholar 

  • Kalra N, Prasad S, Shukla Y (2005) Antioxidant potential of black tea against 7,12-dimethylbenz(a)anthracene- induced oxidative stress in Swiss albino mice. J Environ Pathol Toxicol Oncol 24:105–114

    Article  PubMed  CAS  Google Scholar 

  • Kampa M, Hatzoglou A, Notas G, Damianaki A, Bakogeorgou E, Gemetzi C, Kouroumalis E, Martin PM, Castanas E (2000) Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr Cancer 37:223–233

    Article  PubMed  CAS  Google Scholar 

  • Katiyar SK, Vaid M, van Steeg H, Meeran SM (2010) Green tea polyphenols prevent UV-induced immunosuppression by rapid repair of DNA damage and enhancement of nucleotide excision repair genes. Cancer Prev Res (Phila) 3:179–189

    Article  CAS  Google Scholar 

  • Korkina LG, De Luca C, Kostyuk VA, Pastore S (2009) Plant polyphenols and tumors: from mechanisms to therapies, prevention, and protection against toxicity of anti-cancer treatments. Curr Med Chem 16:3943–3965

    Article  PubMed  CAS  Google Scholar 

  • Kowalski J, Samojedny A, Paul M, Pietsz G, Wilczok T (2005) Effect of apigenin, kaempferol and resveratrol on the expression of interleukin-1beta and tumor necrosis factor-alpha genes in J774.2 macrophages. Pharmacol Rep 57:390–394

    PubMed  CAS  Google Scholar 

  • Kozuki Y, Miura Y, Yagasaki K (2001) Resveratrol suppresses hepatoma cell invasion independently of its anti-proliferative action. Cancer Lett 167:151–156

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, Raghunathan R, Maru GB (2005) Effect of polymeric black tea polyphenols on benzo(a)pyrene [B(a)P]-induced cytochrome P4501A1 and 1A2 in mice. Xenobiotica 35:671–682

    Article  PubMed  CAS  Google Scholar 

  • Kuhnau J (1976) The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 24:117–191

    PubMed  CAS  Google Scholar 

  • Kuo PL, Lin CC (2003) Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 10:219–227

    PubMed  CAS  Google Scholar 

  • Lagarrigue S, Chaumontet C, Heberden C, Martel P, Gaillard-Sanchez I (1995) Suppression of oncogene-induced transformation by quercetin and retinoic acid in rat liver epithelial cells. Cell Mol Biol Res 41:551–560

    PubMed  CAS  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    PubMed  CAS  Google Scholar 

  • Landolfi R, Mower RL, Steiner M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem Pharmacol 33:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Laughton MJ, Evans PJ, Moroney MA, Hoult JR, Halliwell B (1991) Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives. Relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol 42:1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sarkar FH (2002) Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377

    PubMed  CAS  Google Scholar 

  • Lin HH, Chen JH, Chou FP, Wang CJ (2011) Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-kappaB pathway and MMP-2 production by targeting RhoB activation. Br J Pharmacol 162:237–254

    Article  PubMed  CAS  Google Scholar 

  • Liu TT, Liang NS, Li Y, Yang F, Lu Y, Meng ZQ, Zhang LS (2003) Effects of long-term tea polyphenols consumption on hepatic microsomal drug-metabolizing enzymes and liver function in Wistar rats. World J Gastroenterol 9:2742–2744

    PubMed  CAS  Google Scholar 

  • MacCarrone M, Lorenzon T, Guerrieri P, Agro AF (1999) Resveratrol prevents apoptosis in K562 cells by inhibiting lipoxygenase and cyclooxygenase activity. Eur J Biochem 265:27–34

    Article  PubMed  CAS  Google Scholar 

  • Maliakal PP, Coville PF, Wanwimolruk S (2001) Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats. J Pharm Pharmacol 53:569–577

    Article  PubMed  CAS  Google Scholar 

  • Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    PubMed  CAS  Google Scholar 

  • Monde A, Carbonneau MA, Michel F, Lauret C, Diabate S, Konan KE, Sess D, Cristol JP (2011) Potential health implication of in vitro human LDL-Vitamin E oxidation modulation by polyphenols deriving from Cote d’Ivoire’s oil palm species. J Agric Food Chem 59(17):9166–9171

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F (1999) Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5:828–831

    Article  PubMed  CAS  Google Scholar 

  • Mu LN, Zhou XF, Ding BG, Wang RH, Zhang ZF, Chen CW, Wei GR, Zhou XM, Jiang QW, Yu SZ (2003) A case-control study on drinking green tea and decreasing risk of cancers in the alimentary canal among cigarette smokers and alcohol drinkers. Zhonghua Liu Xing Bing Xue Za Zhi 24:192–195

    PubMed  Google Scholar 

  • Mukhtar H, Ahmad N (1999) Green tea in chemoprevention of cancer. Toxicol Sci 52:111–117

    PubMed  CAS  Google Scholar 

  • Mutoh M, Takahashi M, Fukuda K, Komatsu H, Enya T, Matsushima-Hibiya Y, Mutoh H, Sugimura T, Wakabayashi K (2000) Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn J Cancer Res 91:686–691

    Article  PubMed  CAS  Google Scholar 

  • Nachshon-Kedmi M, Yannai S, Haj A, Fares FA (2003) Indole-3-carbinol and 3,3′-diindolylmethane induce apoptosis in human prostate cancer cells. Food Chem Toxicol 41:745–752

    Article  PubMed  CAS  Google Scholar 

  • Nichenametla SN, Taruscio TG, Barney DL, Exon JH (2006) A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 46:161–183

    Article  PubMed  CAS  Google Scholar 

  • Noda Y, Kaneyuki T, Mori A, Packer L (2002) Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J Agric Food Chem 50:166–171

    Article  PubMed  CAS  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85

    Article  PubMed  CAS  Google Scholar 

  • Prakash D, Suri S, Upadhyay G, Singh BN (2007) Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int J Food Sci Nutr 58:18–28

    Article  PubMed  CAS  Google Scholar 

  • Priego S, Feddi F, Ferrer P, Mena S, Benlloch M, Ortega A, Carretero J, Obrador E, Asensi M, Estrela JM (2008) Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol Cancer Ther 7:3330–3342

    Article  PubMed  CAS  Google Scholar 

  • Ranilla LG, Genovese MI, Lajolo FM (2007) Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J Agric Food Chem 55:90–98

    Article  PubMed  CAS  Google Scholar 

  • Rizvi SI, Jha R, Pandey KB (2010) Activation of erythrocyte plasma membrane redox system provides a useful method to evaluate antioxidant potential of plant polyphenols. Methods Mol Biol 594:341–348

    Article  PubMed  CAS  Google Scholar 

  • Seyoum A, Asres K, El-Fiky FK (2006) Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 67:2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Chen Q, Siddiqui I, Sarva K, Srivastava RK (2007a) Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4′, 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal 2:7

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Siddiqui I, Srivastava RK (2007b) Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 304:273–285

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Singh G, Srivastava RK (2007c) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  • Shankar S, Nall D, Tang SN, Meeker D, Passarini J, Sharma J, Srivastava RK (2011) Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One 6:e16530

    Article  PubMed  CAS  Google Scholar 

  • Shi W, Li L, Shi X, Zheng F, Zeng J, Jiang X, Gong F, Zhou M, Li Z (2006) Inhibition of nuclear factor-kappaB activation is essential for membrane-associated TNF-alpha-induced apoptosis in HL-60 cells. Immunol Cell Biol 84:366–373

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2004a) Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 119:139–173

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2004b) Nuclear factor-kappaB: a friend or a foe in cancer? Biochem Pharmacol 68:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Sikkema AH, den Dunnen WF, Diks SH, Peppelenbosch MP, de Bont ES (2011) Optimizing targeted cancer therapy: towards clinical application of systems biology approaches. Crit Rev Oncol Hematol

    Google Scholar 

  • Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270:24995–25000

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Singh BR, Sarma BK, Singh HB (2009a) Potential chemoprevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by polyphenolics from Acacia nilotica bark. Chem Biol Interact 181:20–28

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, Singh HB (2009b) Oxidative DNA Damage Protective Activity, Antioxidant and Anti-quorum Sensing Potentials of Moringa oleifera. Food Chem Toxicol 47(6):1109–1116

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB (2009c) Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol 47:778–786

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Singh BR, Singh RL, Prakash D, Singh DP, Sarma BK, Upadhyay G, Singh HB (2009d) Polyphenolics from various extracts/fractions of red onion (Allium cepa) peel with potential antioxidant and antimutagenic activities. Food Chem Toxicol 47(6):1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Zhang G, Hwa YL, Li J, Dowdy SC, Jiang SW (2010) Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther 10:935–954

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Singh M, Roy P, Prasad S, George J, Shukla Y (2008) Inhibitory effect of tea polyphenols on hepatic preneoplastic foci in Wistar rats. Invest New Drugs 27(6):526–533

    Article  CAS  Google Scholar 

  • Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337:201–212

    Article  PubMed  CAS  Google Scholar 

  • Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S (2011) Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 3:515–528

    Article  Google Scholar 

  • Starke H, Herrmann K (1976) The phenolics of fruits. VIII. Changes in flavonol concentrations during fruit development (authors transl). Z Lebensm Unters Forsch 161:131–135

    Article  PubMed  CAS  Google Scholar 

  • Stoner GD, Morse MA (1997) Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer. Cancer Lett 114:113–119

    Article  PubMed  CAS  Google Scholar 

  • Stoner GD, Mukhtar H (1995) Polyphenols as cancer chemopreventive agents. J Cell Biochem Suppl 22:169–180

    Article  PubMed  CAS  Google Scholar 

  • Subbaramaiah K, Dannenberg AJ (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci 24:96–102

    Article  PubMed  CAS  Google Scholar 

  • Subbaramaiah K, Chung WJ, Michaluart P, Telang N, Tanabe T, Inoue H, Jang M, Pezzuto JM, Dannenberg AJ (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273:21875–21882

    Article  PubMed  CAS  Google Scholar 

  • Sun ZJ, Pan CE, Liu HS, Wang GJ (2002) Anti-hepatoma activity of resveratrol in vitro. World J Gastroenterol 8:79–81

    PubMed  CAS  Google Scholar 

  • Sun B, Zhang P, Qu W, Zhang X, Zhuang X, Yang H (2003) Study on effect of flavonoids from oil-removed seeds of Hippophae rhamnoides on inducing apoptosis of human hepatoma cell. Zhong Yao Cai 26:875–877

    PubMed  Google Scholar 

  • Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK (2010) The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition. J Mol Signal 5:14

    Article  PubMed  CAS  Google Scholar 

  • Tedesco I, Russo M, Russo P, Iacomino G, Russo GL, Carraturo A, Faruolo C, Moio L, Palumbo R (2000) Antioxidant effect of red wine polyphenols on red blood cells. J Nutr Biochem 11:114–119

    Article  PubMed  CAS  Google Scholar 

  • Terao J, Kawai Y, Murota K (2008) Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17(Suppl 1):291–293

    PubMed  CAS  Google Scholar 

  • Wadsworth TL, McDonald TL, Koop DR (2001) Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-alpha. Biochem Pharmacol 62:963–974

    Article  PubMed  CAS  Google Scholar 

  • Wang JN, Chen YJ, Hano Y, Nomura T, Tan RX (2000) Antioxidant activity of polyphenols from seeds of Vitis amurensis in vitro. Acta Pharmacol Sin 21:633–636

    PubMed  CAS  Google Scholar 

  • Williams CA, Harborne JB, Geiger H, Hoult JR (1999) The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry 51:417–423

    Article  PubMed  CAS  Google Scholar 

  • Yanagida A, Shoji A, Shibusawa Y, Shindo H, Tagashira M, Ikeda M, Ito Y (2006) Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. J Chromatogr A 1112:195–201

    Article  PubMed  CAS  Google Scholar 

  • Yang F, de Villiers WJ, McClain CJ, Varilek GW (1998) Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J Nutr 128:2334–2340

    PubMed  CAS  Google Scholar 

  • Yang GY, Liao J, Li C, Chung J, Yurkow EJ, Ho CT, Yang CS (2000) Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 21:2035–2039

    Article  PubMed  CAS  Google Scholar 

  • You BR, Kim SZ, Kim SH, Park WH (2011) Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol Cell Biochem 357(1–2):295–303

    Article  PubMed  CAS  Google Scholar 

  • Yue X, Xu Z (2008) Changes of anthocyanins, anthocyanidins, and antioxidant activity in bilberry extract during dry heating. J Food Sci 73:C494–C499

    Article  PubMed  CAS  Google Scholar 

  • Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080

    Article  PubMed  CAS  Google Scholar 

  • Zheng B, Georgakis GV, Li Y, Bharti A, McConkey D, Aggarwal BB, Younes A (2004) Induction of cell cycle arrest and apoptosis by the proteasome inhibitor PS-341 in Hodgkin disease cell lines is independent of inhibitor of nuclear factor-kappaB mutations or activation of the CD30, CD40, and RANK receptors. Clin Cancer Res 10:3207–3215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the grants from the National Institutes of Health (R01CA125262, RO1CA114469 and RO1CA125262-02S1) and Kansas Bioscience Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shankar, S., Singh, B.N., Srivastava, R.K. (2012). Plant Polyphenols and Their Role in Cancer Prevention and Chemotherapy. In: Shankar, S., Srivastava, R. (eds) Nutrition, Diet and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2923-0_10

Download citation

Publish with us

Policies and ethics