Skip to main content

Calcium Oscillations and Pacemaking

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Calcium plays important role in biological systems where it is involved in diverse mechanisms such as signaling, muscle contraction and neuromodulation. Action potentials are generated by dynamic interaction of ionic channels located on the plasma-membrane and these drive the rhythmic activity of biological systems such as the smooth muscle and the heart. However, ionic channels are not the only pacemakers; an intimate interaction between intracellular Ca2+ stores and ionic channels underlie rhythmic activity. In this review we will focus on the role of Ca2+ stores in regulation of rhythmical behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

IP3 :

Inositol 1,4,5-trisphosphate

CICR:

Ca2+-induced-Ca2+ release

ER:

Endoplasmic reticulum

References

  1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  2. Sammels E, Parys JB, Missiaen L, De Smedt H, Bultynck G (2010) Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 47:297–314

    Article  PubMed  CAS  Google Scholar 

  3. Wray S, Burdyga T (2010) Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90:113–178

    Article  PubMed  CAS  Google Scholar 

  4. Berridge MJ (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32:235–249

    Article  PubMed  CAS  Google Scholar 

  5. Foskett JK, White C, Cheung K-H, Mak D-OD (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  6. Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  PubMed  CAS  Google Scholar 

  7. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  PubMed  CAS  Google Scholar 

  8. Woods NM, Cuthbertson KS, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Article  PubMed  CAS  Google Scholar 

  9. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  10. Meissner G (2002) Regulation of mammalian ryanodine receptors. Front Biosci 7:2072–2080

    Article  Google Scholar 

  11. Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    PubMed  CAS  Google Scholar 

  12. Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca2+ release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  13. Parker I, Yao Y (1991) Regenerative release of calcium from functionally discrete subcellular stores by inositol trisphosphate. Proc R Soc Ser B 246:269–274

    Article  CAS  Google Scholar 

  14. Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  PubMed  CAS  Google Scholar 

  15. Lechleiter J, Girard S, Peralta E, Clapham D (1991) Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252:123–126

    Article  PubMed  CAS  Google Scholar 

  16. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52:690–718

    Article  PubMed  CAS  Google Scholar 

  17. Kuo KH, Herrera AM, Seow CY (2003) Ultrastructure of airway smooth muscle. Respir Physiol Neurobiol 137:197–208

    Article  PubMed  Google Scholar 

  18. van Breemen C, Chen Q, Laher I (1995) Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci 16:98–105

    Article  PubMed  Google Scholar 

  19. Yoshikawa A, van Breemen C, Isenberg G (1996) Buffering of plasmalemmal Ca2+ current by sarcoplasmic reticulum of guinea pig urinary bladder myocytes. Am J Physiol 271:C833–C841

    PubMed  CAS  Google Scholar 

  20. White C, McGeown JG (2000) Ca2+ uptake by the sarcoplasmic reticulum decreases the amplitude of depolarization-dependent [Ca2+]i transients in rat gastric myocytes. Pflugers Arch 440:488–495

    PubMed  CAS  Google Scholar 

  21. Young RC, Schumann R, Zhang P (2001) Intracellular calcium gradients in cultured human uterine smooth muscle: a functionally important subplasmalemmal space. Cell Calcium 29:183–189

    Article  PubMed  CAS  Google Scholar 

  22. Shmigol AV, Eisner DA, Wray S (1999) The role of the sarcoplasmic reticulum as a Ca2+ sink in rat uterine smooth muscle cells. J Physiol 520 Pt 1:153–163

    Article  PubMed  CAS  Google Scholar 

  23. ZhuGe R, Tuft RA, Fogarty KE, Bellve K, Fay FS, Walsh JV Jr (1999) The influence of sarcoplasmic reticulum Ca2+ concentration on Ca2+ sparks and spontaneous transient outward currents in single smooth muscle cells. J Gen Physiol 113:215–228

    Article  PubMed  CAS  Google Scholar 

  24. Ganitkevich V, Hasse V, Pfitzer G (2002) Ca2+-Dependent and Ca2+-independent regulation of smooth muscle contraction. J Muscle Res Cell Motil 23:47–52

    Article  PubMed  CAS  Google Scholar 

  25. Benham CD, Bolton TB (1986) Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol 381:385–406

    PubMed  CAS  Google Scholar 

  26. van Helden DF (1991) Spontaneous and noradrenaline-induced transient depolarizations in the smooth muscle of guinea-pig mesenteric vein. J Physiol 437:511–541

    PubMed  Google Scholar 

  27. Wang Q, Hogg RC, Large WA (1992) Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol 451:525–537

    PubMed  CAS  Google Scholar 

  28. Brown HF (1982) Electrophysiology of the sinoatrial node. Physiol Rev 62:505–530

    PubMed  CAS  Google Scholar 

  29. Noble D, Noble SJ (1984) A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc R Soc Lond B Biol Sci 222:295–304

    Article  PubMed  CAS  Google Scholar 

  30. Hodgkin AL, Rushton WAH (1946) The passive electrical properties of nerve axons. Proc R Soc Ser B 133:444–456

    Article  Google Scholar 

  31. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047–5061

    Article  PubMed  CAS  Google Scholar 

  32. Van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    PubMed  Google Scholar 

  33. Liu LW, Thuneberg L, Huizinga JD (1995) Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther 275:1058–1068

    PubMed  CAS  Google Scholar 

  34. Hashitani H, van Helden DF, Suzuki H (1996) Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol 118:1627–1632

    PubMed  CAS  Google Scholar 

  35. Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD (2001) Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Physiol Cell Physiol 280:C1349–C1356

    PubMed  CAS  Google Scholar 

  36. Lang RJ, Nguyen DT, Matsuyama H, Takewaki T, Exintaris B (2006) Characterization of spontaneous depolarizations in smooth muscle cells of the Guinea pig prostate. J Urol 175:370–380

    Article  PubMed  CAS  Google Scholar 

  37. van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol (Lond) 471:465–479

    Google Scholar 

  38. van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P-Y, Dosen PJ (2000) Role of calcium stores and membrane voltage in the generation of slow wave action potentials in the guinea-pig gastric pylorus. J Physiol 524.1:245–265

    Article  Google Scholar 

  39. Sanders KM (1996) A case for Interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111:492–515

    Article  PubMed  CAS  Google Scholar 

  40. Daniel EE, Bardakjian BL, Huizinga JD, Diamant NE (1994) Relaxation oscillator and core conductor models are needed for understanding of GI electrical activities. Am J Physiol 266:G339–G349

    PubMed  CAS  Google Scholar 

  41. Exintaris B, DT TN, Lam M, Lang RJ (2009) Inositol trisphosphate-dependent Ca(2+) stores and mitochondria modulate slow wave activity arising from the smooth muscle cells of the guinea pig prostate gland. Br J Pharmacol 156:1098–1106

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki H, Takano H, Yamamoto Y, Komuro T, Saito M, Kato K, Mikoshiba K (2000) Properties of gastric smooth muscles obtained from mice which lack inositol trisphosphate receptor. J Physiol 525:105–111

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki H, Hirst GD (1999) Regenerative potentials evoked in circular smooth muscle of the antral region of guinea-pig stomach. J Physiol 517(Pt 2):563–573

    Article  PubMed  CAS  Google Scholar 

  44. Hirst GD, Bramich NJ, Teramoto N, Suzuki H, Edwards FR (2002) Regenerative component of slow waves in the guinea-pig gastric antrum involves a delayed increase in [Ca(2+)](i) and Cl(-) channels. J Physiol 540:907–919

    Article  PubMed  CAS  Google Scholar 

  45. von der Weid PY, Rahman M, Imtiaz MS, van Helden DF (2008) Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol 295:H1989–H2000

    Article  PubMed  Google Scholar 

  46. Peng H, Matchkov V, Ivarsen A, Aalkjaer C, Nilsson H (2001) Hypothesis for the initiation of vasomotion. Circ Res 88:810–815

    Article  PubMed  CAS  Google Scholar 

  47. van Helden DF, Imtiaz MS (2003) Ca2+ phase waves: a basis for cellular pacemaking and long- range synchronicity in the guinea-pig gastric pylorus. J Physiol 548.1:271–296

    Article  Google Scholar 

  48. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  PubMed  CAS  Google Scholar 

  49. Imtiaz MS, Zhao J, Hosaka K, von der Weid PY, Crowe M, van Helden DF (2007) Pacemaking through Ca2+ stores interacting as coupled oscillators via membrane depolarization. Biophys J 92:3843–3861

    Article  PubMed  CAS  Google Scholar 

  50. Imtiaz MS, Smith DW, van Helden DF (2002) A theoretical model of slow wave regulation using voltage-dependent synthesis of inositol 1,4,5-trisphosphate. Biophys J 83:1877–1890

    Article  PubMed  CAS  Google Scholar 

  51. Imtiaz MS, Zhao J, Hosaka K, Von Der Weid P-Y, Crowe M, van Helden D (2007) Pacemaking through Ca2+ stores interacting as coupled oscillators via membrane depolarization. Biophys 92:3843–3861

    Article  CAS  Google Scholar 

  52. Koenigsberger M, Sauser R, Lamboley M, Beny JL, Meister JJ (2004) Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J 87:92–104

    Article  PubMed  CAS  Google Scholar 

  53. Kapela A, Bezerianos A, Tsoukias NM (2008) A mathematical model of Ca2+ dynamics in rat mesenteric smooth muscle cell: agonist and NO stimulation. J Theor Biol 253:238–260

    Article  PubMed  CAS  Google Scholar 

  54. Mangoni ME, Nargeot J (2008) Genesis and regulation of the heart automaticity. Physiol Rev 88:919–982

    Article  PubMed  CAS  Google Scholar 

  55. DiFrancesco D (1985) The cardiac hyperpolarizing-activated current, if. Origins and developments. Prog Biophys Mol Biol 46:163–183

    Article  PubMed  CAS  Google Scholar 

  56. Maltsev VA, Lakatta EG (2009) Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. Am J Physiol Heart Circ Physiol 296:H594–H615

    Article  PubMed  CAS  Google Scholar 

  57. Lakatta EG, Vinogradova T, Lyashkov A, Sirenko S, Zhu W, Ruknudin A, Maltsev VA (2006) The integration of spontaneous intracellular Ca2+ cycling and surface membrane ion channel activation entrains normal automaticity in cells of the Heart’s pacemaker. Ann N Y Acad Sci 1080:178–206

    Article  PubMed  CAS  Google Scholar 

  58. Imtiaz MS, von der Weid PY, van Helden DF (2010) Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J 277:278–285

    Article  PubMed  CAS  Google Scholar 

  59. Huser J, Blatter LA, Lipsius SL (2000) Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol 524:415–422

    Article  PubMed  CAS  Google Scholar 

  60. Lipsius SL, Huser J, Blatter LA (2001) Intracellular Ca2+ release sparks atrial pacemaker activity. News Physiol Sci 16:101–106

    PubMed  CAS  Google Scholar 

  61. Rubenstein DS, Lipsius SL (1989) Mechanisms of automaticity in subsidiary pacemakers from cat right atrium. Circ Res 64:648–657

    PubMed  CAS  Google Scholar 

  62. Zhou Z, Lipsius SL (1993) Na(+)-Ca2+ exchange current in latent pacemaker cells isolated from cat right atrium. J Physiol 466:263–285

    PubMed  CAS  Google Scholar 

  63. Rigg L, Heath BM, Cui Y, Terrar DA (2000) Localisation and functional significance of ryanodine receptors during beta-adrenoceptor stimulation in the guinea-pig sino-atrial node. Cardiovasc Res 48:254–264

    Article  PubMed  CAS  Google Scholar 

  64. Rigg L, Terrar DA (1996) Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea-pig sino-atrial node. Exp Physiol 81:877–880

    PubMed  CAS  Google Scholar 

  65. Imtiaz MS, von der Weid PY, Laver DR, van Helden DF (2010) SR Ca2+ store refill–a key factor in cardiac pacemaking. J Mol Cell Cardiol 49:412–426

    Article  PubMed  CAS  Google Scholar 

  66. Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199

    Article  PubMed  CAS  Google Scholar 

  67. Casteels R, Droogmans G (1981) Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells or rabbit ear artery. J Physiol 317:263–279

    PubMed  CAS  Google Scholar 

  68. Launikonis BS, Barnes M, Stephenson DG (2003) Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc Natl Acad Sci USA 100:2941–2944

    Article  PubMed  CAS  Google Scholar 

  69. Huang J, van Breemen C, Kuo KH, Hove-Madsen L, Tibbits GF (2006) Store-operated Ca2+ entry modulates sarcoplasmic reticulum Ca2+ loading in neonatal rabbit cardiac ventricular myocytes. Am J Physiol Cell Physiol 290:C1572–C1582

    Article  PubMed  CAS  Google Scholar 

  70. Ju YK, Huang W, Jiang L, Barden JA, Allen DG (2003) ATP modulates intracellular Ca2+ and firing rate through a P2Y1 purinoceptor in cane toad pacemaker cells. J Physiol 552:777–787

    Article  PubMed  CAS  Google Scholar 

  71. Yamashita M, Sugioka M, Ogawa Y (2006) Voltage- and Ca2+-activated potassium channels in Ca2+ store control Ca2+ release. FEBS J 273:3585–3597

    Article  PubMed  CAS  Google Scholar 

  72. Yamashita M (2008) Synchronous Ca2+ oscillation emerges from voltage fluctuations of Ca2+ stores. FEBS J 275:4022–4032

    Article  PubMed  CAS  Google Scholar 

  73. Eisner DA, Kashimura T, Venetucci LA, Trafford AW (2009) From the ryanodine receptor to cardiac arrhythmias. Circ J 73:1561–1567

    Article  PubMed  CAS  Google Scholar 

  74. Eisner DA, Kashimura T, O’Neill SC, Venetucci LA, Trafford AW (2009) What role does modulation of the ryanodine receptor play in cardiac inotropy and arrhythmogenesis? J Mol Cell Cardiol 46:474–481

    Article  PubMed  CAS  Google Scholar 

  75. MacLennan DH, Chen SR (2009) Store overload-induced Ca2+ release as a triggering mechanism for CPVT and MH episodes caused by mutations in RYR and CASQ genes. J Physiol 587:3113–3115

    Article  PubMed  CAS  Google Scholar 

  76. Imtiaz MS (2003) Distributed pacemaking through coupled oscillator-based mechanisms: a basis for long-range signaling in smooth muscle. Newcastle, Australia, The University of Newcastle

    Google Scholar 

  77. Imtiaz MS, Katnik CP, Smith DW, van Helden DF (2006) Role of voltage-dependent modulation of store Ca2+ release in synchronization of Ca2+ oscillations. Biophys J 90:1–23

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Imtiaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Imtiaz, M.S. (2012). Calcium Oscillations and Pacemaking. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_22

Download citation

Publish with us

Policies and ethics