Skip to main content

The Potential of Stem Cells and Tissue Engineered Scaffolds for Repair of the Central Nervous System

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 4))

Abstract

Damage to the central nervous system (CNS) can have a devastating consequence due to the limited capacity for repair of the brain and spinal cord. The lack of treatment options available for CNS injury has resulted in increasing interest in stem cell therapies in the hope that they will provide symptomatic relief and/or slow disease progression. Stem cells have been identified as a possible cell source for transplantation due to their capacity to differentiate into many cell types, as well as their self-renewal properties. Transplantation of stem cells has shown promising results for a variety of chronic and acute neural injuries; for both cell replacement as well as promoting endogenous repair. However, issues with graft survival, controlled differentiation as well as adequate reinnervation of host circuitry have hindered clinical development. In this regard, tissue engineering scaffolds offer a novel approach to stem cell therapies as they can be engineered to provide a physical and chemical milieu more suitable for implantation and long term integration of grafted cells. This chapter will highlight some of the current hurdles for stem cell therapies, focusing on cell replacement therapy (CRT), and address ways in which tissue engineering scaffolds may enhance these technologies for future clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • An Y, Tsang KK, Zhang H (2006) Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomed Mater 1:R38–R44

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  • Bacigaluppi M, Pluchino S, Martino G, Kilic E, Hermann DM (2008) Neural stem/precursor cells for the treatment of ischemic stroke. J Neurol Sci 265:73–77

    Article  PubMed  CAS  Google Scholar 

  • Campbell PG, Weiss LE (2007) Tissue engineering with the aid of inkjet printers. Expert Opin Biol Ther 7:1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK, Forsythe JS (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  PubMed  CAS  Google Scholar 

  • Delcroix GJ, Schiller PC, Benoit JP, Montero-Menei CN (2010) Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials 31:2105–2120

    Article  PubMed  CAS  Google Scholar 

  • Dunnett SB, Rosser AE (2004) Cell therapy in Huntington’s disease. NeuroRx 1:394–405

    Article  PubMed  Google Scholar 

  • Dunnett SB, Rosser AE (2007) Stem cell transplantation for Huntington’s disease. Exp Neurol 203:279–292

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059

    Article  PubMed  CAS  Google Scholar 

  • Gelain F, Panseri S, Antonini S, Cunha C, Donega M, Lowery J, Taraballi F, Cerri G, Montagna M, Baldissera F, Vescovi A (2011) Transplantation of nanostructured composite scaffolds results in the regeneration of chronically injured spinal cords. ACS Nano 5:227–236

    Article  PubMed  CAS  Google Scholar 

  • Han D, Gouma PI (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine 2:37–41

    Article  PubMed  CAS  Google Scholar 

  • Horne MK, Nisbet DR, Forsythe JS, Parish CL (2009) Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 19:843–852

    Article  Google Scholar 

  • Kokaia Z, Lindvall O (2003) Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13:127–132

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120:29–40

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, Bresolin N, Comi GP, Corti S (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66:757–772

    Article  PubMed  CAS  Google Scholar 

  • Louro J, Pearse DD (2008) Stem and progenitor cell therapies: recent progress for spinal cord injury repair. Neurol Res 30:5–16

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61(3):596–602

    Article  PubMed  Google Scholar 

  • Nisbet DR, Pattanawong S, Ritchie NE, Shen W, Finkelstein DI, Horne MK, Forsythe JS (2007) Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering. J Neural Eng 4:35–41

    Article  PubMed  CAS  Google Scholar 

  • Nisbet DR, Yu LM, Zahir T, Forsythe JS, Shoichet MS (2008a) Characterization of neural stem cells on electrospun poly(epsilon-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. J Biomater Sci Polym Ed 19:623–634

    Article  PubMed  CAS  Google Scholar 

  • Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS (2008b) Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87:251–263

    PubMed  Google Scholar 

  • Nisbet DR, Rodda AE, Horne MK, Forsythe JS, Finkelstein DI (2009) Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30:4573–4580

    Article  PubMed  CAS  Google Scholar 

  • Nisbet DR, Rodda AE, Horne MK, Forsythe JS, Finkelstein DI (2010) Implantation of functionalized thermally gelling xyloglucan hydrogel within the brain: associated neurite infiltration and inflammatory response. Tissue Eng Part A 16:2833–2842

    Article  PubMed  CAS  Google Scholar 

  • Nomura H, Tator CH, Shoichet MS (2006) Bioengineered strategies for spinal cord repair. J Neurotrauma 23:496–507

    Article  PubMed  Google Scholar 

  • Parish CL, Arenas E (2007) Stem-cell-based strategies for the treatment of Parkinson’s disease. Neurodegener Dis 4:339–347

    Article  PubMed  Google Scholar 

  • Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Pettikiriarachchi JTS, Parish CL, Schoichet MS, Forsythe JS, Nisbet DR (2010) Biomaterials for brain tissue engineering. Aust J Chem 63:1143–1154

    Article  CAS  Google Scholar 

  • Sahni V, Kessler JA (2010) Stem cell therapies for spinal cord injury. Nat Rev Neurol 6:363–372

    Article  PubMed  Google Scholar 

  • Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, Grealish S, Kirik D, Bjorklund A (2009) Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 30:625–638

    Article  PubMed  Google Scholar 

  • Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F (2011) Bioengineered scaffolds for spinal cord repair. Tissue Eng Part B Rev 17:177–194

    Article  PubMed  Google Scholar 

  • Webber MJ, Kessler JA, Stupp SI (2010) Emerging peptide nanomedicine to regenerate tissues and organs. J Intern Med 267:71–88

    Article  PubMed  CAS  Google Scholar 

  • Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92

    Article  PubMed  CAS  Google Scholar 

  • Woerly S, Petrov P, Sykova E, Roitbak T, Simonova Z, Harvey AR (1999) Neural tissue formation within porous hydrogels implanted in brain and spinal cord lesions: ultrastructural, immunohistochemical, and diffusion studies. Tissue Eng 5:467–488

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Dr Richard Williams and Elise Lampe for providing the photomicrograph of the self-assembling peptides and creative artwork, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare L. Parish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rodriguez, A.L., Nisbet, D.R., Parish, C.L. (2012). The Potential of Stem Cells and Tissue Engineered Scaffolds for Repair of the Central Nervous System. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 4. Stem Cells and Cancer Stem Cells, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2828-8_10

Download citation

Publish with us

Policies and ethics