Skip to main content

Geowave Validation with Case Studies: Accurate Geology Reproduces Observations

  • Conference paper
  • First Online:
Submarine Mass Movements and Their Consequences

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 31))

Abstract

Boussinesq wave models have been introduced in tsunami science with considerable success. Methodical simulations of case studies provide a critical form of validation for these models. In current simulation techniques, developed since the 1998 Papua New Guinea event, carefully derived tsunami sources are input into a fourth order Boussinesq water wave simulation code (Geowave) capable of capturing wave dissipation, wave breaking, wave dispersion, and nonlinear wave activity. When the tsunami source is known, almost all tsunami observations can be captured with a single, direct Boussinesq simulation. Here, we summarize case studies for the following events: 125 k BP, Alika 2, Hawaii, US, 1908 Messina Strait, Italy, 1946 Unimak, Alaska, US, 1998 Sissano, Papua New Guinea, among other tsunami events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie S, Morichon D, Grilli ST, Glockner S (2010) A three-fluid model to simulate waves generated by subaerial landslides. Coast Eng 57:779–794

    Article  Google Scholar 

  • Chen Q, Kirby JT, Dalrymple RA, Kennedy AB, Chawla A (2000) Boussinesq modeling of wave transformation, breaking and runup. II: two horizontal dimensions. J Waterway Port Coast Ocean Eng 126:48–56

    Article  Google Scholar 

  • Dalrymple RA, Grilli ST, Kirby JT (2006) Tsunamis and challenges for accurate modeling. Oceanography 19(1):142–151

    Article  Google Scholar 

  • Day SJ, Watts P, Grilli ST, Kirby JT (2005) Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Mar Geol 215(1–2):59–92

    Article  Google Scholar 

  • Favalli M, Boschi E, Mazzarini F, Pareschi MT (2009) Seismic and landslide source of the 1908 Straits of Messina tsunami (Sicily, Italy). Geophys Res Lett 36:L16304. doi:10.1029/2009GL039135

    Article  Google Scholar 

  • Fryer GL, Watts P, Pratson LF (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Mar Geol 203:201–218

    Article  Google Scholar 

  • Greene HG, Murai LY, Watts P, Maher NA, Fisher MA, Paull CE, Eichhubl P (2006) Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat Haz Earth Sci Syst EGU 6:63–88

    Article  Google Scholar 

  • Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure part I: modeling, experimental validation, and sensitivity analysis. J Waterway Port Coast Ocean Eng ASCE 131(6):283–297

    Article  Google Scholar 

  • Grilli ST, Ioualalen M, Asavanant J, Shi F, Kirby JT, Watts P (2007) Source constraints and model simulation of the December 26, 2004 Indian Ocean tsunami. J Waterway Port Coast Ocean Eng ASCE 133(6):414–428

    Article  Google Scholar 

  • Ioualalen M, Pelletier B, Watts P, Regnier M (2006) Numerical modeling of the 26th November 1999 Vanuatu tsunami. J Geophys Res 111(C6). doi:10.1029/2005JC003249

  • Ioualalen M, Asavanant J, Kaewbanjak N, Grilli ST, Kirby JT, Watts P (2007) Modeling the 26 December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Geophys Res 112. doi:10.1029/2006JC003850

  • Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modeling of wave transformation, breaking and runup. I: one dimension. J Waterway Port Coast Ocean Eng 126:39–47

    Article  Google Scholar 

  • Kirby JT, Wei G, Chen Q, Kennedy AB, Dalrymple RA (1998) FUNWAVE 1.0. Fully nonlinear Boussinesq wave model. Documentation and user’s manual. Report CACR-98-06, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware, Newark

    Google Scholar 

  • Kirby JT, Pophet N, Shi F, Grilli ST (2009) Basin scale tsunami propagation modeling using Boussinesq models: parallel implementation in spherical coordinates. In: Proceedings of the WCCE-ECCE-TCCE joint conference on earthquake and tsunami, Istanbul, 22–24 June, paper 100

    Google Scholar 

  • Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher C (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii. J Geophys Res 93:4279–4299

    Article  Google Scholar 

  • Lynett P (2006) Nearshore modeling using high-order Boussinesq equations. J Waterway Port Coast Ocean Eng ASCE 132(5):348–357

    Article  Google Scholar 

  • Mattioli GS, Voight B, Linde AT, Watts P, Widiwijayanti C, Young SR, Elsworth D, Malin PE, Shalev E, Van Boskirk E, Johnston W, Sparks RSJ, Neuberg J, Bass V, Dunkley P, Herd R, Syers T, Williams P, Williams D (2007) Unique and remarkable dilatometer measurements of pyroclastic flow–generated tsunamis. Geology 35(1):25–28

    Article  Google Scholar 

  • McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004a) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian islands. Mar Geol 203:219–233

    Article  Google Scholar 

  • McMurtry GM, Fryer GJ, Tappin DR, Wilkinson IP, Williams M, Fietzke J, Garbe-Schoenberg D, Watts P (2004b) Megatsunami deposits on Kohala volcano, Hawaii from flank collapse of Mauna Loa. Geology 32(9):741–744

    Article  Google Scholar 

  • Moore JG, Clague DA, Holcomb RT, Lipman PW, Normark WR, Torresan ME (1989) Prodigious submarine landslides on the Hawaiian ridge. J Geophys Res 94(B12):17465–17484

    Article  Google Scholar 

  • Okada S (1985) Surface displacement due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Rahiman TIH, Pettinga JR, Watts P (2007) The source mechanism and numerical modelling of the 1953 Suva tsunami, Fiji. Mar Geol 237(2):55–70

    Article  Google Scholar 

  • Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea Tsunami of July 1998 – offshore evidence on the source mechanism. Mar Geol 175:1–23

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST (2008a) The Papua New Guinea tsunami of July 17, 1998: anatomy of a catastrophic event. Nat Haz Earth Syst Sci NHESS 8:243–266

    Article  Google Scholar 

  • Tappin DR, Watts P, Grilli ST, Dubosq S, Billi A, Pophet N, Marani MP (2008b) The 1908 Messina tsunami some comments on the source: earthquake, submarine landslide or a combination of both? Eos Trans AGU 89(53): Fall Meet. Suppl., Abstract S41D-07

    Google Scholar 

  • Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199(221)

    Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Water waves generated by subaerial mass flows. J Geophys Res 108(B5):2236–2255

    Article  Google Scholar 

  • Walder JS, Watts P, Waythomas CF (2006) Mapping tsunami hazards associated with debris flow into a reservoir. J Hyd Eng ASCE 132(1):1–11

    Article  Google Scholar 

  • Watts P (2006) Case study of the 1755 Portugal tsunami. Private consulting report

    Google Scholar 

  • Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin DR (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Haz Earth Sci Syst EGU 3(5):391–402

    Article  Google Scholar 

  • Watts P, Grilli ST, Tappin DR, Fryer GJ (2005) Tsunami generation by submarine mass failure part II: predictive equations and case studies. J Waterway Port Coast Ocean Eng ASCE 131(6):298–310

    Article  Google Scholar 

  • Waythomas CF, Watts P (2003) Numerical simulation of tsunami generation by pryoclastic flow at Aniakchak Volcano, Alaska. Geophys Res Lett 3014:1751–1755

    Article  Google Scholar 

  • Waythomas CF, Watts P, Walder JS (2006) Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine volcano, Alaska. Nat Haz Earth Syst Sci NHESS 6:671–685

    Article  Google Scholar 

  • Waythomas CF, Watts P, Shi F, Kirby JT (2009) Pacific Basin tsunami hazards associated with submarine mass flows in the Aleutian Islands of Alaska. Quat Sci Rev 28:1006–1019

    Article  Google Scholar 

  • Wei G, Kirby JT (1995) A time-dependent numerical code for extended Boussinesq equations’. J Waterway Port Coast Ocean Eng 120:251–261

    Article  Google Scholar 

  • Wei G, Kirby JT, Grilli ST, Subramanya R (1995) A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J Fluid Mech 294:71–92

    Article  Google Scholar 

  • Wei G, Kirby JT, Sinha A (1999) Generation of waves in Boussinesq models using a source function method. Coast Eng 36:271–299

    Article  Google Scholar 

Download references

Acknowledgement

D. Tappin publishes with the permission of the Executive Director, British Geological Survey, NERC, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Watts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Watts, P., Tappin, D.R. (2012). Geowave Validation with Case Studies: Accurate Geology Reproduces Observations. In: Yamada, Y., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2162-3_46

Download citation

Publish with us

Policies and ethics