Skip to main content

Nanotechnology-Based Therapy for Malignant Tumors of the Central Nervous System

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 5

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 5))

  • 1693 Accesses

Abstract

Glioblastoma multiforme (GBM) is an insidious cancer for which there are currently no efficient treatments. The major impediments to successful treatment of GBM are the tumor cells’ inherent ability to develop resistance to chemotherapeutic agents and ionizing radiation and to migrate and invade normal surrounding tissues. These disastrous characteristics lead to post-treatment tumor recurrence uniformly and result in a high mortality rate. Approaches designed to target and eliminate post-surgical GBMs and their invading cells would result in significant clinical improvements for this cancer. Success in the clinic will come from personalization of cancer therapies. This will first require an in-depth understanding of gliomas at the molecular level to uncover weaknesses that can be therapeutically exploited along with novel approaches that are designed to deliver those therapeutic agents. Biological nanotechnology is a growing field that offers significant improvements in methods of drug delivery for cancer in general and in malignant gliomas. Nanooncology represents one of the most significant applications of nanotechnology to medicine and is poised to produce momentous changes in cancer treatment protocols. For instance, nanoparticles have recently been shown to offer multifunctional platforms combining diagnostics, therapeutics delivery and monitoring of treatment response, demonstrating how nanooncology is paradigm shifting. Here, we review these technologies and forecast improvement in the delivery of therapeutic agents to malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Min DH, Singh N, Zhu H, Birjiniuk A, von Maltzahn G, Harris TJ, Xing D, Woolfenden SD, Sharp PA, Charest A, Bhatia S (2009) Functional delivery of siRNA in mice using dendriworms. ACS Nano 3:2495–2504

    Article  PubMed  CAS  Google Scholar 

  • Beduneau A, Saulnier P, Benoit JP (2007a) Active targeting of brain tumors using nanocarriers. Biomaterials 28:4947–4967

    Article  PubMed  CAS  Google Scholar 

  • Beduneau A, Saulnier P, Hindre F, Clavreul A, Leroux JC, Benoit JP (2007b) Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials 28:4978–4990

    Article  PubMed  CAS  Google Scholar 

  • Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, Vassal G (2002) Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther 303:928–936

    Article  PubMed  CAS  Google Scholar 

  • Brigger I, Morizet J, Laudani L, Aubert G, Appel M, Velasco V, Terrier-Lacombe MJ, Desmaele D, d’Angelo J, Couvreur P, Vassal G (2004) Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J Control Release 100:29–40

    Article  PubMed  CAS  Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Giri S, Trewyn BG, Stellmaker MP, Lin VS (2005) Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed Engl 44:5038–5044

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS, Anderson RG, Russell DW, Schneider WJ (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    Article  PubMed  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  PubMed  CAS  Google Scholar 

  • Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    Article  PubMed  CAS  Google Scholar 

  • Hau P, Fabel K, Baumgart U, Rummele P, Grauer O, Bock A, Dietmaier C, Dietmaier W, Dietrich J, Dudel C, Hubner F, Jauch T, Drechsel E, Kleiter I, Wismeth C, Zellner A, Brawanski A, Steinbrecher A, Marienhagen J, Bogdahn U (2004) Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–880

    Article  PubMed  CAS  Google Scholar 

  • Hoarau D, Delmas P, David S, Roux E, Leroux JC (2004) Novel long-circulating lipid nanocapsules. Pharm Res 21:1783–1789

    Article  PubMed  CAS  Google Scholar 

  • Jain KK (2007) Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev Neurother 7:363–372

    Article  PubMed  CAS  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269

    Article  PubMed  CAS  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Article  PubMed  CAS  Google Scholar 

  • Lopez T, Recillas S, Guevara P, Sotelo J, Alvarez M, Odriozola JA (2008) Pt/TiO2 brain biocompatible nanoparticles: GBM treatment using the C6 model in Wistar rats. Acta Biomater 4:2037–2044

    Article  PubMed  CAS  Google Scholar 

  • Major M, Prieur E, Tocanne JF, Betbeder D, Sautereau AM (1997) Characterization and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles. Biochim Biophys Acta 1327:32–40

    Article  PubMed  CAS  Google Scholar 

  • Maletinska L, Blakely EA, Bjornstad KA, Deen DF, Knoff LJ, Forte TM (2000) Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res 60:2300–2303

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74:295–302

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M (2006) Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Control Release 115:46–56

    Article  PubMed  CAS  Google Scholar 

  • Nikanjam M, Blakely EA, Bjornstad KA, Shu X, Budinger TF, Forte TM (2007a) Synthetic nano-low density lipoprotein as targeted drug delivery vehicle for glioblastoma multiforme. Int J Pharm 328:86–94

    Article  PubMed  CAS  Google Scholar 

  • Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007b) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 124:163–171

    Article  PubMed  CAS  Google Scholar 

  • Noble CO, Krauze MT, Drummond DC, Yamashita Y, Saito R, Berger MS, Kirpotin DB, Bankiewicz KS, Park JW (2006) Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 66:2801–2806

    Article  PubMed  CAS  Google Scholar 

  • Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R, Kreuter J, Gelperina S (2007) Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release 117:51–58

    Article  PubMed  CAS  Google Scholar 

  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J Biol Chem 262:14352–14360

    PubMed  CAS  Google Scholar 

  • Prabha S, Labhasetwar V (2004) Nanoparticle-mediated wild-type p53 gene delivery results in sustained antiproliferative activity in breast cancer cells. Mol Pharm 1:211–219

    Article  PubMed  CAS  Google Scholar 

  • Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  PubMed  CAS  Google Scholar 

  • Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, Severin SE, Uhl R, Kock M, Geiger KD, Gelperina SE (2004) Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 109:759–767

    Article  PubMed  CAS  Google Scholar 

  • Umezawa F, Eto Y (1988) Liposome targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Commun 153:1038–1044

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Kawano K, Yokoyama M, Opanasopit P, Okano T, Maitani Y (2006) Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability. Int J Pharm 308:183–189

    Article  PubMed  CAS  Google Scholar 

  • Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhu C, Pardridge WM (2002) Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 6:67–72

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Charest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boskovitz, A., Kandil, A., Charest, A. (2012). Nanotechnology-Based Therapy for Malignant Tumors of the Central Nervous System. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 5. Tumors of the Central Nervous System, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2019-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2019-0_21

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2018-3

  • Online ISBN: 978-94-007-2019-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics