Skip to main content

Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Brain Tumors

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 5

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 5))

  • 1754 Accesses

Abstract

Lasers were invented in the middle of the 20th century, from the previous theoretical work of Einstein on the process of amplification of stimulated emission, and quickly became used in various devices for industrial, telecommunication and military applications. In the medical field, neurosurgeons were some of the first researchers to investigate the use of lasers for therapy in the 1960s, but were limited by cumbersome designs and the availability of lasers that could only operate in pulsed modes. As improved laser designs were introduced that allowed for continuous mode operation and other wavelengths, new medical techniques were developed and improved. Subsequently, in the early 1970s, Sutton introduced the concept of interstitial hyperthermia, which led to the development of a new technique called laser interstitial thermotherapy (LITT). LITT treatments consist of heating tumors with prolonged and moderate temperature elevations, inducing alteration of cell membranes and enzyme denaturation, leading to the formation of a selective zone of coagulation necrosis in the heated tissue without vaporization. The Nd-YAG and diode laser are the most frequent lasers used for LITT due to their optimum wavelength for absorption and heating in tissue. With the recent development and widespread availability of magnetic resonance imaging (MRI), laser fibers can be inserted stereotactically within the tumor and the treatment can be controlled in real-time. MR imaging allows for monitoring of the temperature elevation in the treated area and for prediction of the extent of induced necrosis based on the temperature history. Several clinical studies have been performed that show that the technique is now safe and allows for control of brain tumors metastases for which traditional treatments including radiosurgery have failed. Additional technical progress is now being performed on methods to treat tumors with larger diameters and with more complex shapes. Lastly, additional clinical studies are needed in larger patient populations to confirm the findings of the initial clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, Feinberg DA, Rosen BR, McKinstry RC, Hushek SG (1991) Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn Reson Med 21:132–137

    Article  PubMed  CAS  Google Scholar 

  • Bown SG (1983) Phototherapy of tumours. World J Surg 7:700–701

    Article  PubMed  CAS  Google Scholar 

  • Carpentier A, McNichols RJ, Stafford RJ, Itzcovitz J, Guichard JP, Reizine D, Delaloge S, Vicaut E, Payen D, Gowda A, George B (2008) Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63(1 Suppl 1):ONS21-8, discussion ONS28–9

    Article  PubMed  Google Scholar 

  • De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34:359–367

    Article  PubMed  Google Scholar 

  • Devaux BC, Roux FX (1996) Experimental and clinical standards, and evolution of lasers in neurosurgery. Acta Neurochir (Wien) 138:1135–1147

    Article  CAS  Google Scholar 

  • Higuchi N, Bleier AR, Jolesz FA, Colucci VM, Morris JH (1992) Magnetic resonance imaging of the acute effects of interstitial neodymium:YAG laser irradiation on tissues. Invest Radiol 27:814–821

    Article  PubMed  CAS  Google Scholar 

  • Isbert C, Ritz JP, Roggan A, Schuppan D, Ajubi N, Buhr HJ, Hohenberger W, Germer CT (2007) Laser-induced thermotherapy (LITT) elevates mRNA expression of connective tissue growth factor (CTGF) associated with reduced tumor growth of liver metastases compared to hepatic resection. Lasers Surg Med 39:42–50

    Article  PubMed  Google Scholar 

  • Ivarsson K, Myllymäki L, Jansner K, Bruun A, Stenram U, Tranberg KG (2003) Heat shock protein 70 (HSP70) after laser thermotherapy of an adenocarcinoma transplanted into rat liver. Anticancer Res 23 (5A):3703–3712

    PubMed  CAS  Google Scholar 

  • Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ (1988) MR imaging of laser-tissue interactions. Radiology 168:249–253

    PubMed  CAS  Google Scholar 

  • Kahn T, Bettag M, Ulrich F, Schwarzmaier HJ, Schober R, Fürst G, Mödder U (1994) MRI-guided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 18 (4):519–532

    Article  PubMed  CAS  Google Scholar 

  • Kahn T, Harth T, Kiwit JCW, Schwarzmaier HJ, Wald C, Mödder U (1998) In vivo MRI thermometry using a phase-sensitive sequence: preliminary experience during MRI-guided laser-induced interstitial thermotherapy of brain tumors. J Magn Reson Imaging 8:160–164

    Article  PubMed  CAS  Google Scholar 

  • Kangasniemi M, McNichols R, Bankson JA, Gowda A, Price RE, Hazle JD (2004) Thermal therapy of canine cerebral tumors using a 980 nm diode laser with MR temperature-sensitive imaging feedback. Lasers Surg Med 35:41–50

    Article  PubMed  Google Scholar 

  • Kickhefel A, Roland J, Weiss C, Schick F (2010) Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Phys Med XX:1–10

    Google Scholar 

  • Kou L, Labrie D, Chylek P (1993) Refractive indices of water and ice in the 0.65-2.5 μm spectral range. Appl Opt 32:3531–3540

    Article  PubMed  CAS  Google Scholar 

  • Menovsky T, Beek JF, Van Gemert MJC, Roux FX, Bown SG (1996) Interstitial laser thermotherapy in neurosurgery: a review. Acta Neurochir (Wien) 138:1019–1026

    Article  CAS  Google Scholar 

  • Mordon S, Brunetaud JM (1992) Bases physiques des applications thérapeutiques des lasers. Neurochirurgie 38:203–207

    PubMed  CAS  Google Scholar 

  • Roux FX, Merienne L, Devaux B, Leriche B, Ciocola C (1992a) Les lasers YAG en neurochirurgie. Neurochirurgie 38:229–234

    PubMed  CAS  Google Scholar 

  • Roux FX, Merienne L, Fallet-Bianco C, Beuvon F, Devaux B, Leriche B, Cioloca C (1992b) La thermothérapie interstitielle laser stéréotaxique. Une alternative dans la prise en charge thérapeutique de certaines tumeurs cérébrales. Neurochirurgie 38:238–244

    PubMed  CAS  Google Scholar 

  • Salcman M, Samaras GM (1981) Hyperthermia for braintumors:biophysical rationale. Neurosurgery 9:327–335

    Article  PubMed  CAS  Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10 (6):787–800

    Article  PubMed  CAS  Google Scholar 

  • Schatz SW, Bown SG, Wyman DR, Groves JT, Wilson BC (1992) Low power interstitial Nd:YAG laser photocoagulation in normal rabbit brain. Lasers Med Sci 7:433–439

    Article  Google Scholar 

  • Schober R, Bettag M, Sabel M, Ulrich F, Hessel S (1993) Fine structure of zonal changes in experimental Nd:YAG laser-induced interstitial hyperthermia. Lasers Surg Med 13:234–241

    Article  PubMed  CAS  Google Scholar 

  • Schulze CP, Kahn T, Harth T, Schwurzmaier HJ, Schober R (1998) Correlation of neuropathologic findings and phase-based MRI temperature maps in experimental laser-induced interstitial thermotherapy. J Magn Reson Imaging 8:115–120

    Article  PubMed  CAS  Google Scholar 

  • Schulze PC, Vitzthum HE, Goldammer A, Schneider JP, Schober R (2004) Laser-induced thermotherapy of neoplastic lesions in brain – underlying tissue alterations, MRI-monitoring and clinical applicability. Acta Neurochir (Wien) 146:803–812, Review article

    Article  CAS  Google Scholar 

  • Schwabe B, Kahn T, Harth T, Ulrich F, Schwarzmaier HJ (1997) Laser-induced thermal lesions in the human brain: short- and long-term appearance on MRI. J Comput Assist Tomogr 21 (5):818–825

    Article  PubMed  CAS  Google Scholar 

  • Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38(1):79–100

    PubMed  Google Scholar 

  • Stellar S (1968) Laser studies on nervous system tissue, neoplasms and related biological systems. Proc Virchow Med Soc 26 (Suppl):416–442

    Google Scholar 

  • Sugiyama K, Sakai T, Fujishima I, Ryu H, Uemura K, Yokoyama T (1990) Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg 54–55:501–505

    Article  PubMed  Google Scholar 

  • Sutton C (1971) Tumor hyperthermia in the treatment of malignant gliomas of the brain. Trans Ann Neurol Assoc 96:195–199

    CAS  Google Scholar 

  • Tracz RA, Wyman DR, Little PB, Towner RA, Stewart WA, Schatz SW, Pennock PW, Wilson BC (1992) Magnetic resonance imaging of interstitial laser photocoagulation in brain. Lasers Surg Med 12:165–173

    Article  PubMed  CAS  Google Scholar 

  • Vogl, Mack, Roggan, Straub, Eichler, Müller, Knappe, Felix, Vogl TJ, Mack MG, Roggan A, Straub R, Eichler KC, Müller PK, Knappe V, Felix R (1998) Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology 209(2):381–385

    PubMed  CAS  Google Scholar 

  • Yung JP, Shetty A, Elliott A, Weinberg JS, McNichols RJ, Gowda A, Hazle JD, Stafford RJ (2010) Quantitative comparison of thermal dose models in normal canine brain. Med Phys 37(10):5313–5321

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre C. Carpentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beccaria, K., Canney, M.S., Carpentier, A.C. (2012). Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Brain Tumors. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 5. Tumors of the Central Nervous System, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2019-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2019-0_20

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2018-3

  • Online ISBN: 978-94-007-2019-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics