Skip to main content

Photosynthesis in a CO2-Rich Atmosphere

  • Chapter
  • First Online:
Photosynthesis

Summary

The concentration of CO2 ([CO2]) in the atmosphere is projected to exceed 550 ppm by 2050. C3 plants respond directly to growth at elevated [CO2] by stimulation of photosynthesis and reduced stomatal conductance. The stimulation of photosynthesis is the result of increased velocity of carboxylation of CO2 by Rubisco and inhibition of the competing oxygenation reaction. Long-term exposure of C3 plants to elevated [CO2] can also lead to photosynthetic acclimation in which allocation of resources to components of the photosynthetic machinery, including Rubisco, is altered to optimize metabolic efficiency. The decrease in stomatal conductance that occurs in all plants at elevated [CO2] can reduce canopy water use and indirectly enhance carbon gain by ameliorating drought stress. However, canopy micrometeorology constrains reductions in water use at the whole-plant level compared to the leaf level. C4 photosynthesis is not directly stimulated by free-air concentration enrichment (FACE) of CO2 in the field. However, reduced water use can indirectly enhance carbon gain by ameliorating stress in times and places of drought. There are commonalities and important distinctions between plant responses to growth at elevated [CO2] under FACE versus controlled environment chambers. In FACE experiments: (1) the enhancement of photosynthesis and productivity by elevated [CO2] is sustained over time; (2) the decrease in carboxylation capacity and leaf N characteristic of photosynthetic acclimation to elevated [CO2] is consistent with an optimization of metabolic efficiency rather than a general down-regulation of metabolism, and (3) the enhancement effect of elevated [CO2] is greatest for photosynthesis, intermediate for biomass accumulation, and lowest for crop yield. Plant responses to elevated [CO2] have the potential to influence the global carbon cycle and climate in the future, but the complexity of scaling from the leaf to whole plant, canopy, ecosystem and biosphere make it unclear to what extent this will be realized. Elevated [CO2] will probably offset some of the future losses in crop yield caused by increased temperature and drought stress, but not to the extent previously thought. Expanding FACE experimentation to consider multiple elements of global change across a wider geographic range and more ecosystem types should be a priority if we are to minimize the problems, and maximize the benefits, of climate change impacts on ecosystem good and services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[CO2] –:

CO2 concentration;

A – :

Rate of photosynthetic CO2 assimilation;

A′ – :

Rate of daily photosynthetic CO2 assimilation;

A c –:

Rate of daily canopy photosynthetic CO2 assimilation;

A/c i –:

Photosynthetic CO2-response curve;

A sat – :

Light-saturated rate of photosynthetic CO2 assimilation;

c a – :

Atmospheric CO2 concentration;

c i – :

Intercellular CO2 concentration of leaf;

ci/ca – :

Ratio of intercellular to atmospheric CO2 concentration;

E – :

Leaf transpiration;

ET – :

Evapotranspiration;

FACE –:

Free air concentration enrichment;

g s – :

Stomatal conductance;

g m –:

Mesophyll conductance;

GPP –:

Gross primary productivity;

J – :

Rate of electron transport;

J max –:

Maximum apparent electron transport capacity;

K m :

Michaelis-Menton constant;

kc cat –:

Catalytic turnover number of RuBP carboxylation by Rubisco;

l – :

Stomatal limitation to photosynthesis;

LAI –:

Leaf area index;

N –:

Nitrogen;

NPP –:

Net primary productivity;

OTC –:

Open top chamber;

PEPc –:

phosphoenolpyruvate carboxylase;

PPFD –:

Photosynthetic photon flux density;

RH –:

Relative humidity;

Rubisco –:

Ribulose-1,5-bisphosphate carboxylase/oxygenase;

RuBP –:

Ribulose 1,5-bisphosphate;

T –:

Temperature;

TPU –:

Triose phosphate utilization;

V cmax :

Maximum apparent carboxylation capacity of Rubisco;

t -:

Rubisco specificity for CO2 relative to O2

References

  • Ainsworth EA and Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytol 165: 351–371

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA and Moore DJ, Morgan PB, Naidu SL, Ra HSY, Zhu XG, Curtis PS, Long SP (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biol 8: 695–709

    Article  Google Scholar 

  • Ainsworth EA, Leakey ADB, Ort DR and Long SP (2008a) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179: 5–9

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Rogers A, Blum H, Nosberger J and Long SP (2003) Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to free air CO2 enrichment (FACE). J Exp Bot 54: 2769–2774

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Rogers A and Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R and Long SP (2004) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated CO2 in the field with single gene substitutions in Glycine max. Ag Forest Meteorol 122: 85–94

    Article  Google Scholar 

  • Allen LH, Boote KJ, Jones JW, Jones PH, Valle RR, Acock B, Rogers HH and Dahlman RC (1987) Response of vegetation to rising carbon dioxide: Photosynthesis, biomass and seed yield of soybean. Glob Biogeochem Cycles 1: 1–14

    Article  CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D and Smith M (1998) Crop evapotranspiration - guidelines for computing crop water requirements - FAO irrigation and drainage paper 56. In: Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Allen SG, Idso SB and Kimball BA (1990) Interactive effects of CO2 and environment on net photosynthesis of water-lily. Ag Ecosyst Environ 30: 81–88

    Article  CAS  Google Scholar 

  • Amthor JS, Mitchell RJ, Runion GB, Rogers HH, Prior SA and Wood CW (1994) Energy content, construction cost and phytomass accumulation of Glycine max (L) Merr and Sorghum bicolor (L) Moench grown in elevated CO2 in the field. New Phytol 128: 443–450

    Article  Google Scholar 

  • Anderson LJ, Maherali H, Johnson HB, Polley HW and Jackson RB (2001) Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Glob Change Biol 7: 693–707

    Article  Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Book  Google Scholar 

  • Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14: 869–875

    Article  CAS  Google Scholar 

  • Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22: 629–637

    Article  CAS  Google Scholar 

  • Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ and Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46: 1269–1276

    Article  CAS  Google Scholar 

  • Ball JT, Woodrow IE and Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in Photosynthesis Research, pp 221–224. Martinus-Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Barnola JM, Anklin M, Porcheron J, Raynaud D, Schwander J and Stauffer B (1995) CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice. Tellus B 47: 264–272

    Article  Google Scholar 

  • Bazzaz FA, Sombroek WG (1996) Global climate changes and agricultural production: an assessment of current knowledge and critical gaps. In: Bazzaz F, Sombroek W (eds) Global climate changes and agricultural production, pp 319–330. John Wiley and Sons, Chichester

    Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S and Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130: 1992–1998

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Calfapietra C, Davey PA, Wittig VE, Scarascia-Mugnozza GE, Raines CA and Long SP (2003) Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol 159: 609–621

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Hollinger SE and Meyers T (2005b) The conversion of the corn/soybean ecosystem to no-till agriculture may result in a carbon sink. Glob Change Biol 11: 1867–1872

    Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR and Long SP (2005a) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220: 434–446

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiology 143: 134–144

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya N, Hileman D, Ghosh P, Musser R, Bhattacharya S and Biswas P (1990) Interaction of enriched CO2 and water-stress on the physiology of and biomass production in sweet-potato grown in open-top chambers. Plant Cell Environ 13:933–940

    Article  CAS  Google Scholar 

  • Bowes G (1993) Facing the inevitable - plants and increasing atmospheric CO2. Annu Rev Plant Physiol 44: 309–332

    CAS  Google Scholar 

  • Brooks A and Farquhar G (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406

    Article  CAS  Google Scholar 

  • Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp 473–503, Academic Press Limited, London

    Chapter  Google Scholar 

  • Buckley TN, Mott KA and Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26: 1767–1785

    Article  CAS  Google Scholar 

  • Bunce JA (2004) Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia 140: 1–10

    Article  PubMed  Google Scholar 

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA and Marland G (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Nat Acad Sci USA 104:18866–18870

    Article  PubMed  CAS  Google Scholar 

  • Cao MK and Woodward FI (1998) Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4: 185–198

    Article  Google Scholar 

  • Carcova J, Maddonni GA and Ghersa CM (2000) Long-term cropping effects on maize: Crop evapotranspiration and grain yield. Agron J 92: 1256–1265

    Article  Google Scholar 

  • Chaves M and Pereira J (1992) Water-stress, CO2 and climate change. J Exp Bot 43: 1131–1139

    Article  Google Scholar 

  • Clifford S, Stronach I, Mohamed A, Azamali S and Crout N (1993) The effects of elevated atmospheric carbon-dioxide and water-stress on light interception, dry-matter production and yield in stands of groundnut (Arachis-Hypogaea L). J Exp Bot 44: 1763–1770

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C and Berry JA (1991) Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration - a model that includes a laminar boundary-layer. Agr Forest Meteorol 54: 107–136

    Article  Google Scholar 

  • Conley MM, Kimball BA, Brooks TJ, Pinter PJ, Hunsaker DJ, Wall GW, Adam NR, LaMorte RL, Matthias AD, Thompson TL, Leavitt SW, Ottman MJ, Cousins AB and Triggs JM (2001) CO2 enrichment increases water-use efficiency in sorghum. New Phytol 151: 407–412

    Article  Google Scholar 

  • Coughenour MB and Chen DX (1997) Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. Ecol Appl 7: 802–827

    Google Scholar 

  • Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Leavitt SW, LaMorte RL, Matthias AD, Ottman MJ, Thompson TL and Webber AN (2001) Reduced photorespiration and increased energy-use efficiency in young CO2-enriched sorghum leaves. New Phytol 150: 275–284

    Article  CAS  Google Scholar 

  • Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Ottman MJ, Leavitt SW and Webber AN (2002) Photosystem II energy use, non-photochemical quenching and the xanthophyll cycle in Sorghum bicolor grown under drought and free-air CO2 enrichment (FACE) conditions. Plant Cell Environ 25: 1551–1559

    Article  CAS  Google Scholar 

  • Cousins AB, Adam NR, Wall GW, Kimball BA, Pinter PJ, Ottman MJ, Leavitt SW and Webber AN (2003) Development of C4 photosynthesis in sorghum leaves grown under free-air CO2 enrichment (FACE). J Exp Bot 54: 1969–1975

    Article  PubMed  CAS  Google Scholar 

  • Cure JD and Acock B (1986) Crop responses to carbon-dioxide doubling - a literature survey. Agr Forest Meteorol 38: 127–145

    Article  Google Scholar 

  • Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19: 127–137

    Article  Google Scholar 

  • Curtis PS and Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113: 299–313

    Article  Google Scholar 

  • Dai ZY, Ku MSB and Edwards GE (1995) C4 photosynthesis - the effects of leaf development on the CO2-concentrating mechanism and photorespiration in maize. Plant Physiol 107: 815–825

    PubMed  CAS  Google Scholar 

  • Day FP, Weber EP, Hinkle CR and Drake BG (1996) Effects of elevated atmospheric CO2 on fine root length and distribution in an oak-palmetto scrub ecosystem in central Florida. Glob Change Biol 2: 143–148

    Article  Google Scholar 

  • Delgado E, Medrano H, Keys AJ and Parry MAJ (1995) Species variation in Rubisco specificity factor. J Exp Bot 46: 1775–1777

    Article  CAS  Google Scholar 

  • Dewar RC (2002) The Ball-Berry-Leunning and Trdieu-Davis stomata models: synthesis and extension with a spatially aggregated picture of guard cell function. Plant Cell Environ 25: 1383–1398

    Article  Google Scholar 

  • Diaz S, Grime JP, Harris J and McPherson E (1993) Evidence of a feedback mechanism limiting plant-response to elevated carbon-dioxide. Nature 364: 616–617

    Article  CAS  Google Scholar 

  • Drake BG, Leadley PW, Arp WJ, Nassiry D and Curtis PS (1989) An open top chamber for field studies of elevated atmospheric CO2 concentration on saltmarsh vegetation. Funct Ecol 3: 363–371

    Article  Google Scholar 

  • Drake BG, GonzalezMeler MA and Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48: 609–639

    CAS  Google Scholar 

  • Ehleringer JR, Sage RF, Flanagan LB and Pearcy RW (1991) Climate change and the evolution of C4 photosynthesis. Trends Ecol Evol 6: 95–99

    Article  PubMed  CAS  Google Scholar 

  • Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM and Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice. J Geophys Res-Atmos 101: 4115–4128

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA and Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21: 475–495

    Article  CAS  Google Scholar 

  • Farage PK, McKee IF and Long SP (1998) Does a low nitrogen supply necessarily lead to acclimation of photosynthesis to elevated CO2? Plant Physiol 118: 573–580

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD and Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33: 317–345

    Article  CAS  Google Scholar 

  • Farquhar GD and von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Farrar J, Pollock C and Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Sci 154: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Field CB and Avissar R (1998) Bidirectional interactions between the biosphere and the atmosphere - Introduction. Glob Change Biol 4: 459–460

    Article  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT and Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240

    Article  PubMed  CAS  Google Scholar 

  • Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim HS, Matamala R, McCarthy HR, Oren R, Pippen JS and Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87: 15–25

    Article  PubMed  Google Scholar 

  • Fitzsimons PJ and Weyers JDB (1986) Volume changes of Commelina communis guard-cell protoplasts in response to K+, light and CO2. Physiol Plantarum 66: 463–468

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbo M, Diaz-Espej A, Galmes J and Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31: 602–621

    Article  PubMed  CAS  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S and Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10: 603–628

    Article  CAS  Google Scholar 

  • Galmes J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H and Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28: 571–579

    Article  CAS  Google Scholar 

  • Gao Q, Zhao P, Zeng X, Cai X and Shen W (2002) A model of stomata conductance to quantify the relationship between leaf transpiration, microclimate, and soil water stress. Plant Cell Environ 25: 1373–1381

    Article  Google Scholar 

  • Garcia RL, Long SP, Wall GW, Osborne CP, Kimball BA, Nie GY, Pinter PJ, Lamorte RL and Wechsung F (1998) Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment. Plant Cell Environ 21: 659–669

    Article  Google Scholar 

  • Ghannoum O, Siebke K, von Caemmerer S and Conroy JP (1998) The photosynthesis of young Panicum C4 leaves is not C3-like. Plant Cell Environ 21: 1123–1131

    Article  CAS  Google Scholar 

  • Ghannoum O, Caemmerer S, Ziska LH and Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ 23: 931–942

    Article  CAS  Google Scholar 

  • Ghannoum O, Evans JR, Chow WS, Andrews TJ, Conroy JP and von Caemmerer S (2005) Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol 137: 638–650

    Article  PubMed  CAS  Google Scholar 

  • Gilbert I, Jarvis P and Smith H (2001) Proximity signal and shade avoidance differences between early and late successional trees. Nature 411: 792–795

    Article  PubMed  CAS  Google Scholar 

  • Gillon J and Yakir D (2001) Influence of carbonic anhydrase activity in terrestrial vegetation on the O-18 content of atmospheric CO2. Science 291: 2584–2587

    Article  PubMed  CAS  Google Scholar 

  • Gotow K, Kondo N and Syono K (1982) Effect of CO2 on volume change of guard-cell protoplast from Vicia-faba L. Plant Cell Physiol 23: 1063–1070

    Google Scholar 

  • Grashoff C, Dijkstra P, Nonhebel S, Schapendonk A and VandeGeijn S (1995) Effects of climate change on productivity of cereals and legumes: model evaluation of observed year-to-year variability of the CO2 response. Glob Change Biol 1:417–428

    Article  Google Scholar 

  • Gunderson CA, Sholtis JD, Wullschleger SD, Tissue DT, Hanson PJ and Norby RJ (2002) Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant Cell Environ 25: 379–393

    Article  Google Scholar 

  • Harley PC and Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth Res 27: 169–178

    CAS  Google Scholar 

  • Harley PC, Loreto F, Dimarco G and Sharkey TD (1992a) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98: 1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF and Strain BR (1992b) Modeling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15: 271–282

    Article  CAS  Google Scholar 

  • Herrick JD and Thomas RB (2001) No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment. Plant Cell Environ 24: 53–64

    Article  CAS  Google Scholar 

  • Herrick JD, Maherali H and Thomas RB (2004) Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment. New Phytol 162: 387–396

    Article  Google Scholar 

  • Hickler T, Smith B, Prentice IC, Mjofors K, Miller P, Arneth A and Sykes MT (2008) CO2 fertilization in temperate face experiments not representative of boreal and tropical forests. Global Change Biology 14(7): 1531–1542

    Google Scholar 

  • Hocking PJ, Meyer CP (1991) Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry-matter and nitrogen in wheat and maize. Aust J Plant Physiol 18: 339–356

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ and Xiaosu D (eds) (2001) Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

    Google Scholar 

  • Hungate BA, Jackson RB, Field CB and Chapin FS (1996) Detecting changes in soil carbon in CO2 enrichment experiments. Plant Soil 187: 135–145

    Article  CAS  Google Scholar 

  • Idso SB, Kimball BA, Akin DE and Kridler J (1993) A general relationship between CO2-induced reductions in stomatal conductance and concomitant increases in foliage temperature. Environ Exp Bot 33: 443–446

    Article  CAS  Google Scholar 

  • Jarvis PG and McNaughton KG (1986) Stomatal control of transpiration - scaling up from leaf to region. Adv Ecol Res 15: 1–49

    Article  Google Scholar 

  • Jones P, Jones J and Allen L (1985) Seasonal carbon and water balances of soybeans grown under stress treatments in sunlit chambers. Trans Asae 28: 2021–2028

    Google Scholar 

  • Jordan D B and Ogren W L (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose bisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yields: an assemblage and analysis of 430 prior observations. Agron J 75: 779–788

    Article  Google Scholar 

  • Kimball BA, Pinter PJ, Garcia RL, LaMorte RL, Wall GW, Hunsaker DJ, Wechsung G, Wechsung F and Kartschall T (1995) Productivity and water use of wheat under free-air CO2 enrichment. Glob Change Biol 1: 429–442

    Article  Google Scholar 

  • Kimball BA, LaMorte RL, Pinter PJ, Wall GW, Hunsaker DJ, Adamsen FJ, Leavitt SW, Thompson TL, Matthias AD and Brooks TJ (1999) Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. Water Resour Res 35: 1179–1190

    Article  CAS  Google Scholar 

  • Kirschbaum MUF (1994) The sensitivity of C3 photosynthesis to increasing CO2 concentration - a theoretical-analysis of its dependence on temperature and background CO2 concentration. Plant Cell Environ 17: 747–754

    Article  CAS  Google Scholar 

  • Knapp AK, Hamerlynck EP and Owensby CE (1993) Photosynthetic and water relations responses to elevated CO2 in the C4 grass Andropogon-Gerardii. Int J Plant Sci 154: 459–466

    Article  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol 47: 509–540

    CAS  Google Scholar 

  • Koroleva OA, Farrar JF, Tomos AD and Pollock CJ (1997) Patterns of solute in individual mesophyll, bundle sheath and epidermal cells of barley leaves induced to accumulate carbohydrate. New Phytol 136: 97–104

    CAS  Google Scholar 

  • Koroleva OA, Farrar JF, Tomos AD and Pollock CJ (1998) Carbohydrates in individual cells of epidermis, mesophyll, and bundle sheath in barley leaves with changed export or photosynthetic rate. Plant Physiol 118: 1525–1532

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Hofmann B, Schafer C and Stitt M (1993) Regulation of the expression of Rbcs and other photosynthetic genes by carbohydrates - a mechanism for the sink regulation of photosynthesis. Plant J 3: 817–828

    Article  CAS  Google Scholar 

  • Lawlor DW and Mitchell RAC (1991) The effects of increasing CO2 on crop photosynthesis and productivity - a review of field studies. Plant Cell Environ 14: 807–818

    Article  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR and Long SP (2004) Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future CO2 rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Glob Change Biol 10: 951–962

    Article  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Ort DR and Long SP (2006a) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ 29:1794–1800

    Article  PubMed  CAS  Google Scholar 

  • Leakey ADB, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR and Long SP (2006b) Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol 140: 779–790

    Article  PubMed  CAS  Google Scholar 

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentrations and the future of C4 crops for food and fuel. Proc Royal Soc B 276: 2333–2343.

    Article  CAS  Google Scholar 

  • Leakey, A.D.B., Xu, F., Gillespie, K.M., McGrath, J.M. Ainsworth, E.A., Ort, D.R., (2009) The genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Nat Acad Sci USA 106: 3597–3602

    Article  PubMed  CAS  Google Scholar 

  • Leavitt SW, Paul EA, Galadima A, Nakayama FS, Danzer SR, Johnson H and Kimball BA (1996) Carbon isotopes and carbon turnover in cotton and wheat FACE experiments. Plant Soil 187: 147–155

    Article  CAS  Google Scholar 

  • Lee TD, Tjoelker MG, Ellsworth DS and Reich PB (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytol 150: 405–418

    Article  CAS  Google Scholar 

  • Leuning R (1995) A critical-appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18: 339–355

    Article  CAS  Google Scholar 

  • Leymarie J, Lasceve G and Vavasseur A (1999) Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ 22: 301–308

    Article  CAS  Google Scholar 

  • Lichter J, Barron SH, Bevacqua CE, Finzli AC, Irving KE, Stemmler EA and Schlesinger WH (2005) Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86: 1835–1847

    Article  Google Scholar 

  • Long SP (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations - has its importance been underestimated? Plant Cell Environ 14: 729–739

    Article  CAS  Google Scholar 

  • Long SP and Drake BG (1991) Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge, Scirpus-olneyi. Plant Physiol 96: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Long SP and Hutchin PR (1991) Primary production in grasslands and coniferous forests with climate change - an overview. Ecol Appl 1: 139–156

    Article  Google Scholar 

  • Long SP, Nie GY, Baker NR, Drake BG, Farage PK, Hendrey G, Lewin KH (1992) The implications of concurrent increases in temperature, CO2 and tropospheric O3 for terrestrial C3 photosynthesis. Photosynth Res 34: 108–108

    Google Scholar 

  • Long S, Osborne C, Humphries S (1997) Photosynthesis, rising atmospheric CO2 concentration and climate change. In: Bremeyer A, Hall D, and Melillo J (eds) Scope 56: Global Change. Wiley, Chichester

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A and Ort DR (2004) Rising atmospheric carbon dioxide: Plants face the future. Annu Rev Plant Biol 55: 591–628

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB and Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos T Roy Soc B 360: 2011–2020

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nosberger J and Ort DR (2006) Food for thought: lower than expected crop yield stimulation with rising carbon dioxide concentrations. Science 312: 1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Loreto F, Harley PC, Dimarco G and Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by 3 different methods. Plant Physiol 98: 1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Field CB and Mooney HA (1994) Predicting responses of photosynthesis and root fraction to elevated CO2: Interaction among carbon, nitrogen and growth. Plant Cell Environ 17: 1195–1204

    Google Scholar 

  • Luo YQ and Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80: 1568–1583

    Article  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR and Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54: 731–739

    Article  Google Scholar 

  • Maherali H, Johnson HB and Jackson RB (2003) Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 26: 1297–1306

    Article  Google Scholar 

  • Makino A, Harada M, Sato T, Nakano H and Mae T (1997) Growth and N allocation in rice plants under CO2 enrichment. Plant Physiol 115: 199–203

    PubMed  CAS  Google Scholar 

  • Maroco JP, Breia E, Faria T, Pereira JS and Chaves MM (2002) Effects of long-term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant Cell Environ 25: 105–113

    Article  Google Scholar 

  • Maroco JP, Edwards GE and Ku MSB (1999) Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta 210: 115–125

    Article  PubMed  CAS  Google Scholar 

  • McLeod AR and Long SP (1999) Free-air carbon dioxide enrichment (FACE) in global change research: A review. In: Advances in Ecological Research, Vol 28, pp 1–56

    Article  CAS  Google Scholar 

  • McNaughton K and Jarvis P (1991) Effects of spatial scale on stomatal control of transpiration. Agr Forest Meteorol 54: 279–301

    Article  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson BD, Strassemeyer J, Wang K, Curtis PS and Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149: 247–264

    Article  Google Scholar 

  • Meinzer FC (1993) Stomatal control of transpiration. Trends Ecol Evol 8: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J and Jackson P (1997) Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components. Plant Cell Environ 20: 1242–1252

    Article  Google Scholar 

  • Messinger SM, Buckley TN and Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140: 771–778

    Article  PubMed  CAS  Google Scholar 

  • Moore BD, Cheng SH and Edwards GE (1986) The influence of leaf development on the expression of C4 metabolism in Flaveria trinervia, a C4 dicot. Plant Cell Physiol 27: 1159–1167

    CAS  Google Scholar 

  • Moore BD, Cheng SH, Rice J and Seemann JR (1998) Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 21: 905–915

    Article  CAS  Google Scholar 

  • Moore BD, Cheng SH, Sims D and Seemann JR (1999) The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ 22: 567–582

    Article  CAS  Google Scholar 

  • Moore DJP, Aref S, Ho RM, Pippen JS, Hamilton J and DeLucia EH (2006) Annual basal area increment and growth duration of Pinus taeda in response to eight years of free-air CO2 enrichment. Global Change Biology. 12: 1367–1377

    Article  Google Scholar 

  • Morgan JA, LeCain DR, Read JJ, Hunt HW and Knight WG (1998) Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3). Oecologia 114: 483–493

    Article  Google Scholar 

  • Morgan PB, Bollero GA, Nelson RL, Dohleman FG and Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Change Biol 11: 1856–1865

    Article  Google Scholar 

  • Morison JIL (1987) Climatology, plant-growth and CO2 history. Nature 327: 560–560

    Article  Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular. Plant Physiol 86: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Makino A and Mae T (1997) The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115: 191–198

    PubMed  CAS  Google Scholar 

  • Neftel A, Friedli H, Moor E, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1994) Historical CO2 record from the Siple station ice core. In: Boden T, Kaiser D, Sepanski R and Stoss F (eds) Trends ‘93: A Compendium of Data on Global Change, pp 11–14. Carbon Dioxide Inf. Anal. Cent., Oak Ridge

    Google Scholar 

  • Nelson SD and Mayo JM (1975) The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. Can J Bot 53: 1–7

    Article  Google Scholar 

  • Nie GY, Hendrix DL, Webber AN, Kimball BA and Long SP (1995a) Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2 concentration in the field. Plant Physiol 108: 975–983

    PubMed  CAS  Google Scholar 

  • Nie GY, Long SP, Garcia RL, Kimball BA, Lamorte RL, Pinter PJ, Wall GW and Webber AN (1995b) Effects of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins. Plant Cell Environ 18: 855–864

    Article  CAS  Google Scholar 

  • Nijs I, Ferris R, Blum H, Hendrey G and Impens I (1997) Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ 20: 1041–1050

    Article  Google Scholar 

  • Noormets A, Sober A, Pell EJ, Dickson RE, Podila GK, Sober J, Isebrands JG and Karnosky DF (2001) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant Cell Environ 24: 327–336

    Article  CAS  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH and Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102: 18052–18056

    Article  PubMed  CAS  Google Scholar 

  • Nowak RS, Ellsworth DS and Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 - do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162: 253–280

    Article  Google Scholar 

  • Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D and Vourlitis G (1994) Transient nature of CO2 fertilization in Arctic tundra. Nature 371: 500–503

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG and Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469–472

    Article  PubMed  CAS  Google Scholar 

  • Ottman MJ, Kimball BA, Pinter PJ, Wall GW, Vanderlip RL, Leavitt SW, LaMorte RL, Matthias AD and Brooks TJ (2001) Elevated CO2 increases sorghum biomass under drought conditions. New Phytol 150: 261–273

    Article  Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Bremer D and Auen LM (1997) Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob Change Biol 3: 189–195

    Article  Google Scholar 

  • Pagani M, Freeman KH and Arthur MA (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285: 876–879

    Article  PubMed  CAS  Google Scholar 

  • Pearson PN and Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406: 695–699

    Article  PubMed  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Report DOE/GO-102005–2315, Oak Ridge National Laboratory, Oak Ridge.

    Google Scholar 

  • Pinter PJ, Kimball BA, Wall GW, LaMorte RL, Hunsaker DJ, Adamsen FJ, Frumau KFA, Vugts HF, Hendrey GR, Lewin KF, Nagy J, Johnson HB, Wechsunge F, Leavitt SW, Thompson TL, Matthias AD and Brooks TJ (2000) Free-air CO2 enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agr Forest Meteorol 103: 319–333

    Article  Google Scholar 

  • Polley H (2002) Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Sci 42: 131–140

    Article  PubMed  Google Scholar 

  • Poorter H, Roumet C and Campbell BD (1996) Interspecific variation in the growth response of plants to elevated [CO2]: A search for functional types. In: Korner C, and Bazzaz FA (eds) Carbon Dioxide, Populations, and Communities, pp 375–412, Academic Press, New York

    Chapter  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Qu´er´e C, Scholes RJ and Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In; Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K and Johnson CA (eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp 183–237. Cambridge University Press, New York

    Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Siebke K, Anderson JM and Badger MR (1998) Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust J Plant Physiol 25: 445–452

    Article  CAS  Google Scholar 

  • Riley JJ and Hodges CN (1969) Plant responses to CO2 enrichment: a function of the micro-environment. Paper presented at meeting of Am Assoc Adv Sci, Colorado Springs, CO, American Association for the Advancement of Science, Washington DC (1969) 7–10 May 1969

    Google Scholar 

  • Roelfsema MRG, Hanstein S, Felle HH and Hedrich R (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J 32: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Rogers A and Humphries S (2000) A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Glob Change Biol 6: 1005–1011

    Article  Google Scholar 

  • Rogers A, Fischer BU, Bryant J, Frehner M, Blum H, Raines CA and Long SP (1998) Acclimation of photosynthesis to elevated CO2 under low- nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol 118: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu XG, Delucia EH, Ort DR and Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 27: 449–458

    Article  CAS  Google Scholar 

  • Rogers A, Ainsworth EA and Kammann C (2006) FACE value. Perspectives on the future of Free Air CO2 Enrichment studies. In: Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR and Blum H (eds) Managed Ecosystems and CO2: Case Studies, Processes and Perspectives Ecological Studies Series, Vol. 187, pp 431–450, Springer

    Google Scholar 

  • Rogers H, Sionit N, Cure J, Smith J and Bingham G (1984) Influence of elevated carbon-dioxide on water relations of soybeans. Plant Physiol 74: 233–238

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Winderickx J and Thevelein JM (2002) Glucose-sensing and -signaling mechanisms in yeast. FEMS Yeast Res 2: 183–201

    PubMed  CAS  Google Scholar 

  • Sage RF (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic per­formance at high and low temperature. J Exp Bot 53: 609–620

    Article  PubMed  CAS  Google Scholar 

  • Sage RF and Kubien DS (2003) Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth Res 77: 209–225

    Article  PubMed  CAS  Google Scholar 

  • Saliendra NZ, Meinzer FC, Perry M and Thom M (1996) Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. J Exp Bot 47: 907–914

    Article  CAS  Google Scholar 

  • Samarakoon AB and Gifford RM (1996) Elevated CO2 effects on water use and growth of maize in wet and drying soil. Aust J Plant Phys 23: 53–62

    Article  CAS  Google Scholar 

  • Saralabai VC, Vivekanandan M and Babu RS (1997) Plant responses to high CO2 concentration in the atmosphere. Photosynthetica 33: 7–37

    Article  CAS  Google Scholar 

  • Saxe H, Ellsworth DS and Heath J (1998) Tree and forest functioning in an enriched CO2 atmosphere. New Phytol 139: 395–436

    Article  Google Scholar 

  • Schimel D, Melillo J, Tian HQ, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R and Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287: 2004–2006

    Article  PubMed  CAS  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL and Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH and Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411: 466–469

    Article  PubMed  CAS  Google Scholar 

  • Schleucher J, Vanderveer PJ and Sharkey TD (1998) Export of carbon from chloroplasts at night. Plant Physiol 118: 1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Ilan N and Grantz DA (1988) Calcium effects on stomatal movement in Commelina-communis L - Use of EGTA to modulate stomatal response to light, KCl and CO2. Plant Physiol 87: 583–587

    Article  PubMed  CAS  Google Scholar 

  • Seeman JR, Badger MB, Berry JA (1984) Variations in the specific activity of Ribulose-1,5-Bisphosphate Carboxylase between species utilizing differing photosynthetic pathways. Plant Physiol 74: 791–794

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB and Henderson-Sellers (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275: 502–509

    Article  PubMed  CAS  Google Scholar 

  • Seneweera SP, Ghannoum O and Conroy J (1998) High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment. Aust J Plant Physiol 25: 287–292

    Article  Google Scholar 

  • Servaites JC and Geiger DR (2002) Kinetic characteristics of chloroplast glucose transport. J Exp Bot 53: 1581–1591

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher-plants. Plant Cell 2: 1027–1038

    PubMed  CAS  Google Scholar 

  • Siegenthaler U, Friedli H, Loetscher H, Moor E, Neftel A, Oeschger O and Stauffer B (1988) Stable-isotope ratios and concentration of CO2 in air from polar ice cores. Ann Glaciol 10: 1–6

    Google Scholar 

  • Singsaas EL, Ort DR and Delucia EH (2004) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. Plant Cell Environ 27: 41–50

    Article  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Phys Plant Mol Biol 51: 49–81

    Article  CAS  Google Scholar 

  • Spreitzer RJ and Salvucci ME (2002) Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53: 449–475

    Article  PubMed  CAS  Google Scholar 

  • Springer CJ, DeLucia EH and Thomas RB (2005) Relationships between net photosynthesis and foliar nitrogen concentrations in a loblolly pine forest ecosystem grown in elevated atmospheric carbon dioxide. Tree Physiol 25: 385–394

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14: 741–762

    Article  CAS  Google Scholar 

  • Stitt M and Krapp A (1999) The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22: 583–621

    Article  CAS  Google Scholar 

  • Thompson S, Govindasamy B, Mirin A, Caldeira K, Delire C, Milovich J, Wickett M and Erickson D (2004) Quantifying the effects of CO2-fertilized vegetation on future global climate and carbon dynamics. Geophys Res Lett 31: L23211

    Article  CAS  Google Scholar 

  • Tibbitts T and Langhans R (1993) Controlled-environment studies. In: Hall D, Scurlock J, Bolhar-Nordenkampf H, Leegood R and Long S (eds) Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual, pp 65–78. Chapman & Hall, London

    Chapter  Google Scholar 

  • Tissue DT and Oechel WC (1987) Response of Eriophorum-vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68: 401–410

    Article  Google Scholar 

  • Travis A and Mansfield T (1979a) Stomatal responses to light and CO2 are dependent on KCl concentration. Plant Cell Environ 2: 319–323

    Article  Google Scholar 

  • Travis A and Mansfield T (1979b) Reversal of the CO2-responses of stomata by fusicoccin. New Phytol 83: 607–614

    Article  CAS  Google Scholar 

  • Triggs JM, Kimball BA, Pinter PJ, Wall GW, Conley MM, Brooks TJ, LaMorte RL, Adam NR, Ottman MJ, Matthias AD, Leavitt SW and Cerveny RS (2004) Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum. Ag Ecosyst Environ 124: 63–79

    Google Scholar 

  • USDA (2005) In: World Agricultural Production - World Grains by Commodity for December 2004, p 8. Production Estimates and Crop Assessment Division, Foreign Agricultural Service, United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Van Groenigen K, Harris D, Horwath W, Hartwig U and Van Kessel C (2002) Linking sequestration of 13C and 15N in aggregates in a pasture soil following 8 years of elevated atmospheric CO2. Glob Change Biol 8: 1094–1108

    Article  Google Scholar 

  • Van Kessel C, Horwath W, Hartwig U, Harris D and Luscher A (2000) Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Glob Change Biol: 435–444

    Google Scholar 

  • Vavasseur A and Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165: 665–682

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S and Evans J (1991) Determination of the average partial-pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18: 287–305

    Article  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS and Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in-vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195: 88–97

    Article  Google Scholar 

  • von Caemmerer S, Ghannoum O, Conroy JP, Clark H and Newton PCD (2001) Photosynthetic responses of temperate species to free air CO2 enrichment (FACE) in a grazed New Zealand pasture. Aust J Plant Physiol 28: 439–450

    Google Scholar 

  • von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ and Raines CA (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot 55: 1157–1166

    Article  CAS  Google Scholar 

  • Wall GW, Adam NR, Brooks TJ, Kimball BA, Pinter PJ, LaMorte RL, Adamsen FJ, Hunsaker DJ, Wechsung G, Wechsung F, Grossman-Clarke S, Leavitt SW, Matthias AD and Webber AN (2000) Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves. Photosynth Res 66: 79–95

    Article  PubMed  CAS  Google Scholar 

  • Wall GW, Brooks TJ, Adam R, Cousins AB, Kimball BA, Pinter PJ, LaMorte RL, Triggs L, Ottman MJ, Leavitt SW, Matthias AD, Williams DG and Webber AN (2001) Elevated atmospheric CO2 improved Sorghum plant water status by ameliorating the adverse effects of drought. New Phytol 152: 231–248

    Article  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH and Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5: 723–741

    Article  Google Scholar 

  • Wand SJE, Midgley GF and Stock WD (2001) Growth responses to elevated CO2 in NADP-ME, NAD-ME and PCK C4 grasses and a C3 grass from South Africa. Aust J Plant Physiol 28: 13–25

    Google Scholar 

  • Watling JR and Press MC (1997) How is the relationship between the C4 cereal Sorghum bicolor and the C3 root hemi-parasites Striga hermonthica and Striga asiatica affected by elevated CO2? Plant Cell Environ 20: 1292–1300

    Article  Google Scholar 

  • Watling JR, Press MC and Quick WP (2000) Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiol 123: 1143–1152

    Article  PubMed  CAS  Google Scholar 

  • Watson R, Albritton D, Barker T, Bashmakov I, Canziani O, Christ R, Cubasch U, Davidson O, Gitay H, Griggs D, Halsnaes K, Houghton J, House J, Kundzewicz Z, Lal M, Leary N, Magadza C, McCarthy J, Mitchell J, Moreira J, Munasinghe M, Noble I, Pachauri R, Pittock B, Prather M, Richels R, Robinson J, Sathaye J, Schneider S, Scholes R, Stocker T, Sundarararman N, Swart R, Taniguchi T and Zhou D (2001) Climate Change 2001: Synthesis report. Summary for Policymakers. Intergovernmental Panel for Climate Change, Geneva

    Google Scholar 

  • Whitney SM, Baldett P, Hudson GS, and Andrews TJ (2001) Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26:535–547

    Article  PubMed  CAS  Google Scholar 

  • Whitehead D, Hogan KP, Rogers GND, Byers JN, Hunt JE, McSeveny TM, Hollinger DY, Dungan RJ, Earl WB and Bourke MP (1995) Performance of large open-top chambers for long-term field investigations of tree response to elevated carbon dioxide concentration. J Biogeogr 22: 307–313

    Article  Google Scholar 

  • Widodo W, Vu J, Boote K, Baker J and Allen L (2003) Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environ Exp Bot 49: 259–272

    Article  CAS  Google Scholar 

  • Wiese A, Groner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flugge UI and Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Willmer C and Fricker M (1996) Stomata. Chapman & Hall, London

    Book  Google Scholar 

  • Wong SC (1979) Elevated atmospheric partial pressure of CO2 and plant growth. I. Interactions of nitrogen nutrition and photosynthetic capacity in C3 and C4 plants. Oecologia 44: 68–74

    Article  Google Scholar 

  • Woodrow IE (1994) Optimal acclimation of the C3 photosynthetic system under enhanced CO2. Photosynth Res 39: 401–412

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS and Holmes WE (2000) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10: 47–59

    Google Scholar 

  • Zelitch I (1973) Plant productivity and the control of photorespiration. Proc Natl Acad Sci USA 70: 579–784

    Article  CAS  Google Scholar 

  • Zhu X-G, Portis Jr. AR and Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27: 155–165

    Article  CAS  Google Scholar 

  • Ziska LH and Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54: 199–208

    Article  CAS  Google Scholar 

  • Ziska LH, Hogan KP, Smith AP and Drake BG (1991) Growth and photosynthetic response of 9 tropical species with long-term exposure to elevated carbon-dioxide. Oecologia 86: 383–389

    Article  Google Scholar 

  • Ziska LH, Sicher RC, Bunce JA (1999) The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiol Plant 105: 74–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Aleel K. Grennan for her constructive comments on the draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Ort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Zhu, X., Long, S.P., Ort, D.R. (2012). Photosynthesis in a CO2-Rich Atmosphere. In: Eaton-Rye, J., Tripathy, B., Sharkey, T. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1579-0_29

Download citation

Publish with us

Policies and ethics