Skip to main content

Detection of Transformation Products of Emerging Contaminants

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Environmental research nowadays is focusing more and more on different categories of emerging contaminants, because of their increasing release into the environment, the lack of information regarding the occurrence and health effects of the parent compounds, and, even more, of their transformation products, and the need for the development and optimisation of analytical methods for their determination in environmental samples. Emerging contaminants and transformation products are detected by advanced analytical methods such as liquid chromatography (LC) or gas chromatography (GC) combined with tandem mass spectrometric (MS/MS) detection. The rapid development and improvement of these methods during the last few years provides the opportunity not only to determine trace levels of emerging pollutants in environmental samples, but also to identify and detect their transformation products. This is a particularly important step towards safeguarding environmental quality and human health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fatta D, Achilleos A, Nikolaou A, Meric S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC-Trends Anal Chem 26(6):515–533

    Article  CAS  Google Scholar 

  2. Kostopoulou M, Nikolaou A (2008) Analytical problems and the need for sample preparation in the determination of pharmaceuticals and their metabolites in aqueous environmental matrices. TrAC-Trends Anal Chem 27(11):1023–1035

    Article  CAS  Google Scholar 

  3. Munoz F, von Sonntag C (2000) The reactions of ozone with tertiary amines including the complexing agents nitrilotriacetic acid. Chem Soc Perkin Trans 2:2029–2037

    Article  Google Scholar 

  4. Vogna D, Marotta R, Napolitano A, d’Ischia M (2002) UV/H2O2-induced hydroxylation/degradation pathways and 15 N-aided inventory of nitrogenous breakdown products. J Org Chem 67(17):6143–6151

    Article  CAS  Google Scholar 

  5. Andreozzi R, Caprio V, Marotta R, Vogna D (2003) Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system. Water Res 37:993–999

    Article  CAS  Google Scholar 

  6. Calza P, Pazzi M, Medana C, Baiocchi C, Pelizzetti E (2004) The photocatalytic process as a tool to identify metabolitic products formed from dopant substances: the case of buspirone. J Pharm Biomed Anal 35:9–19

    Article  CAS  Google Scholar 

  7. Calza P, Medana C, Pazzi M, Baiocchi C, Pelizzetti E (2004) Photocatalytic transformations of aminopyrimidines on TiO2 in aqueous solution. Appl Catal B Environ 52:267–274

    Article  CAS  Google Scholar 

  8. Snyder SA, Wert EC, Rexing DJ, Zegers RE, Drury DD (2006) Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water. Ozone Sci Eng 28:445–453

    Article  CAS  Google Scholar 

  9. Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38(2):414–422

    Article  CAS  Google Scholar 

  10. Farré M, Péreza S, Kantiania L, Barceló D (2008) Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC-Trends Anal Chem 27(11):991–1007

    Article  Google Scholar 

  11. Botitsi E, Frosyni C, Tsipi D (2007) Determination of pharmaceuticals from different therapeutic classes in wastewaters by liquid chromatography–electrospray ionization–tandem mass spectrometry. Anal Bioanal Chem 387:1317–1327

    Article  CAS  Google Scholar 

  12. Gros M, Petrovic M, Barcelo D (2006) Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta 70:678–690

    Article  CAS  Google Scholar 

  13. Gros M, Petrovic M, Barcelo D (2006) Multi-residue analytical methods using LC-tandem MS for the determination of pharmaceuticals in environmental and wastewater samples: a review. Anal Bioanal Chem 386:941–952

    Google Scholar 

  14. Petrovic M, Gros M, Barcelo D (2006) Multi-residue analysis of pharmaceuticals in wastewater by ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry. J Chromatogr A 1124:68–81

    Article  CAS  Google Scholar 

  15. Bryan PD, Hawkins KR, Stewart JT, Capomacchia AC (1992) Analysis of chlortetracycline by high performance liquid chromatography with postcolumn alkaline-induced fluorescence detection. Biomed Chromatogr 6:305–310

    Article  CAS  Google Scholar 

  16. Diaz-Cruz MS, Barcelo D (2006) Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 386:973–985

    Article  CAS  Google Scholar 

  17. Bravo JC, Garcinuno RM, Fernandez P, Durand JS (2007) A new molecularly imprinted polymer for the on-column solid-phase extraction of diethylstilbestrol from aqueous samples. Anal Bioanal Chem 388:1039–1045

    Article  CAS  Google Scholar 

  18. O’Connor S, Aga DS (2007) Analysis of tetracycline antibiotics in soil: advances in extraction, clean-up, and quantification. TrAC-Trends Anal Chem 26:456–465

    Article  Google Scholar 

  19. Jacobsen AM, Halling-Sorensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using presurrised liqiod extraction followed by soild-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1038:157–170

    Article  CAS  Google Scholar 

  20. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000—A national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  21. Weigel S, Berger U, Jensen E, Kallenborn R, Thoresen H, Huhnerfuss H (2004) Determination of selected pharmaceuticals and caffeine in sewage and seawater from Tromsø/Norway with emphasis on ibuprofen and its metabolites. Chemosphere 56:583–592

    Article  CAS  Google Scholar 

  22. Perez S, Barcelo D (2007) Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. TrAC-Trends Anal Chem. 26:494–514

    Article  CAS  Google Scholar 

  23. Eichhorn P, Ferguson PL, Perez S, Aga DS (2005) Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Anal Chem 77:4176–4184

    Article  CAS  Google Scholar 

  24. Gomez MJ, Malato O, Ferrer I, Aguera A, Fernandez-Alba AR (2007) Solid-phase extraction followed by liquid chromatography—time-of-flight—mass spectrometry to evaluate pharmaceuticals in effluents. A pilot monitoring study. J Environ Monit 9:718–729

    Article  Google Scholar 

  25. Stolker AAM, Niesing W, Hogendoorn EA, Versteegh JFM, Fuchs R, Brinkman UAT (2004) Liquid chromatography with triple-quadrupole or quadrupole-time of flight mass spectrometry for screening and confirmation of residues of pharmaceuticals in water. Anal Bioanal Chem 378(9):955–963

    Article  CAS  Google Scholar 

  26. Seitz W, Schulz W, Weber WH (2006) Novel applications of highly sensitive liquid chromatography/mass spectrometry/mass spectrometry for the direct detection of ultra-trace levels of contaminants in water. Rapid Commun Mass Spectrom 20:2281–2285

    Article  CAS  Google Scholar 

  27. Nikolai LN, McClure EL, MacLeod SL, Wong CS (2006) Stereoisomer quantification of the β-blocker drugs atenolol, metoprolol, and propranolol in wastewaters by chiral high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1131:103–109

    Article  CAS  Google Scholar 

  28. Quintana JB, Reemtsma T (2004) Sensitive determination of acidic drugs and triclosan in surface and wastewater by ion-pair reverse-phase liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 18:765–774

    Article  CAS  Google Scholar 

  29. Hada M, Takino M, Yamagami T, Daishima S, Yamaguchi K (2000) Trace analysis of pesticide residues in water by high-speed narrow-bore capillary gas chromatography–mass spectrometry with programmable temperature. J Chromatogr A 874:81–90

    Article  CAS  Google Scholar 

  30. Santos FJ, Galceran MT (2002) The application of gas chromatography to environmental analysis. TrAC-Trends Anal Chem 21:672–685

    Article  CAS  Google Scholar 

  31. Stuber M, Reemtsma T (2004) Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC-ESI-MS. Anal Bioanal Chem 378:910–918

    Article  Google Scholar 

  32. Ferguson PL, Iden CR, McElroy AE, Brownawell BJ (2001) Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC-electrospray-MS. Anal Chem 73:3890–3895

    Article  CAS  Google Scholar 

  33. Kuster M, Lopez de Alda MJ, Barcelo D (2004) Analysis and distribution of estrogens and progestogens in sewage sludge, soils and sediments. TrAC-Trends Anal Chem 23:790–798

    Article  CAS  Google Scholar 

  34. Lee LS, Strock TJ, Sarmah AK, Rao PSC (2003) Sorption and Dissipation of Testosterone, Estrogens, and Their Primary Transformation Products in Soils and Sediment. Environ Sci Technol 37(18):4098–4105

    Article  CAS  Google Scholar 

  35. Lee Y, Von Gunten U (2007) Efficient removal of the estrogenic activity during oxidative treatment of waters containing steroid estrogens, Conference Micropol and Ecohazard 2007, Frankfurt

    Google Scholar 

  36. Fine DD, Breidenbach GP, Price TL, Hutchins SR (2003) Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography–negative ion chemical ionization tandem mass spectrometry. J Chromatogr A 1017:167

    Article  CAS  Google Scholar 

  37. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D (2004) Picogram per liter level determination of estrogens in natural waters and waterworks by a fully automated on-line solid-phase extraction-liquid chromatography-electrospray tandem mass spectrometry method. Anal Chem 76:6998–7006

    Article  CAS  Google Scholar 

  38. Watabe Y, Kubo T, Nishikawa T, Fujita T, Kaya K, Hosoya K (2006) Fully automated liquid chromatography–mass spectrometry determination of 17β-estradiol in river water. J Chromatogr A 1120:252–259

    Article  CAS  Google Scholar 

  39. Mitani K, Fujioka M, Kataoka H (2005) Fully automated analysis of estrogens in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 1081:218–224

    Article  CAS  Google Scholar 

  40. Penalver A, Pocurull E, Borrull F, Marce RM (2002) Method based on solid-phase microextraction–high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J Chromatogr A 964:153–160

    Article  CAS  Google Scholar 

  41. Isobe T, Shiraishi H, Yasuda M, Shinoda A, Suzuki H, Morita M (2003) Determination of estrogens and their conjugates in water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr A 984:195–202

    Article  CAS  Google Scholar 

  42. Lopez de Alda MJ, Diaz-Cruz S, Petrovic M, Barcelo D (2003) Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment. J Chromatogr A 1000:503–526

    Article  CAS  Google Scholar 

  43. Shareef A, Angove MJ, Wells JD (2006) Optimization of silylation using N -methyl- N - (trimethylsilyl)-trifluoracetimide, N, O -bis-(trimethylsilyl)-trifluoroacetamide and N -(tert -butyldimethylsilyl)- N -methyltrifluoroacetamide for the determination of the estrogens estrone and 17 a -ethinylestradiol by gas chromatography-mass spectrometry. J Chromatogr A 1108:121–128

    Article  CAS  Google Scholar 

  44. Reddy S, Brownawell BJ (2005) Analysis of estrogens in sediment from a sewage-impacted urban estuary using high-performance liquid chromatography/time-of-flight mass spectrometry. Environ Toxicol Chem 24:1041–1047

    Article  CAS  Google Scholar 

  45. Lamprecht G, Kraushofer T, Stoschitzky K, Lindner W (2000) Enantioselective analysis of (R)- and (S)-atenolol in urine samples by a high-performance liquid chromatography column-switching setup. J Chromatogr B Biomed Sci Appl 740:219–226

    Article  CAS  Google Scholar 

  46. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, Knutsson J, Morrison G (2005) Passive sampling techniques for monitoring pollutants in water. TrAC-Trends Anal Chem 24:845–868

    Article  CAS  Google Scholar 

  47. Bruheim I, Liu X, Pawliszyn J (2003) Thin film microextraction. Anal Chem 75:1002–1010

    Article  CAS  Google Scholar 

  48. Rodriguez I, Rubi E, Gonzalez R, Quintana JB, Cela R (2005) On-fibre silylation following solid-phase microextraction for the determination of acidic herbicides in water samples by gas chromatography. Anal Chim Acta 537:259–266

    Article  CAS  Google Scholar 

  49. Koester CJ, Simonich SL, Esser BK (2003) Environmental analysis. Anal Chem 75:2813–2829

    Article  CAS  Google Scholar 

  50. Lord H, Pawliszyn J (2000) Evolution of solid-phase microextraction technology. J Chromatogr A 885:153–193

    Article  CAS  Google Scholar 

  51. Wu J, Yu X, Lord H, Pawliszyn J (2000) Solid-phase microextraction of inorganic ions based on polypyrrole film. Analyst 125:391–394

    Article  CAS  Google Scholar 

  52. Pang X, Cheng G, Li R, Lu S, Zhang Y (2005) Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Anal Chim Acta 550:13–17

    Article  CAS  Google Scholar 

  53. Peck AM (2006) Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices. Anal Bioanal Chem 386:907–916

    Article  CAS  Google Scholar 

  54. Artola-Garicano E, Borkent I, Hermens JLM, Vaes WHJ (2003) Removal of two polycyclic musks in sewage treatment plants: freely dissolved and total concentrations. Environ Sci Technol 37:3111–3116

    Article  CAS  Google Scholar 

  55. Valkova N, Lépine F, Valeanu L, Dupont M, Labrie L, Bisaillon JG, Beaudet R, Shareck F, Villemur R (2001) Hydrolysis of 4-hydroxybenzoic acid esters (Parabens) and their aerobic transformation into phenol by the resistant enterobacter cloacae strain EM. Appl Environ Microbiol 67(6):2404–2409

    Article  CAS  Google Scholar 

  56. Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA, Müller MD, Buser HR (2004) Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol 38(2):390–395

    Article  CAS  Google Scholar 

  57. Bester K (2009) Analysis of musk fragrances in environmental samples. J Chromatogr A 1216(3):470–480

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Nikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Nikolaou, A., Lofrano, G. (2012). Detection of Transformation Products of Emerging Contaminants. In: Lofrano, G. (eds) Green Technologies for Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1430-4_2

Download citation

Publish with us

Policies and ethics