Skip to main content

Multiscale Modelling of Bone Tissue – Remodelling and Application to Scaffold Design

  • Chapter
  • First Online:
Advances on Modeling in Tissue Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 20))

Abstract

In tissue engineering design it is in general hypothesised that the scaffold should provide a mechanical environment similar to the pre-degenerative one for initial function and have sufficient pore interconnectivity for cell migration and cell/gene delivery. In the case of bone tissue, the design of such scaffolds can be greatly improved by the knowledge of the bone adaptation pro9 cess thus facilitating the identification of scaffold microstructures compatible with the properties of real bone. In this chapter we present a multiscale model for bone adaptation that potentially can respond to some of the scaffold design requirements. The proposed model focuses on the two top scale levels of bone architecture. The macroscale (whole bone) characterized by the bone apparent density distribution and the microscale where the trabecular structure of bone in terms of its mechanical properties is characterized. At global scale bone is assumed as a continuum material characterized by equivalent mechanical properties. At local scale the bone trabecular anisotropy is approached by a locally periodic porous material. The relevance of incorporating a micro design scale relies on the possibility of controlling morphometric parameters that not only characterize trabecular structure, and thus can help the design of bone substitutes, but also allow a fine balance between bone tissue biological and mechanical functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pompe W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hempel U, Scharnweber D, Schulte K (2003), Functionally graded materials for biomedical applications, Mat Sci Eng A362:40–60.

    Google Scholar 

  2. Lin CY, Kikuchi N and Hollister SJ (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech, 37:623–636.

    Article  Google Scholar 

  3. Wolff J, (1986) The law of bone remodeling (Das Gesetz der Transformation der Knochen, Hirschwald, 1892). Translated by Maquet P. and Furlong R. Springer, Berlin.

    Google Scholar 

  4. Hart RT, Davy DT, Heiple KG (1984). A computational model for stress analysis of adaptive elastic materials with a view toward applications in strain-induced bone remodeling. J Biomech Eng 106:342–350.

    Article  Google Scholar 

  5. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloof TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150.

    Article  Google Scholar 

  6. Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of tissue biology by mechanical energy. J Biomech 20:785–795.

    Article  Google Scholar 

  7. Beaupré GS, Orr TE, Carter DR, (1990) An approach for time-dependent bone modeling and remodeling-theoretical development. J. Orth Res 8:651–661.

    Article  Google Scholar 

  8. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone- remodeling simulation models. J Biomech 25:1425–1441.

    Article  Google Scholar 

  9. Cowin SC, Sadegh AM, Luo GM (1992) An evolutionary Wolff's law for trabecular architecture, J Biomech Eng 114:129–137.

    Article  Google Scholar 

  10. Prendergast PJ, Taylor D (1994). Prediction of bone adaptation using damage accumulation. J Biomech 27:1067–1076.

    Article  Google Scholar 

  11. Hart RT, Fritton SP (1997) Introduction to finite element based simulation of functional adaptation of cancellous bone. Forma 12:277–299.

    Google Scholar 

  12. Jacobs CR, Simo JC, Beaupré GS, Carter DR (1997) Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J Biomech 30:603–613.

    Article  Google Scholar 

  13. Fernandes P, Rodrigues H, Jacobs C (1999) A model of bone adaptation using a global optimization criterion based on the trajectorial theory of Wolff. Comput Methods Biomech Biomed Eng 2:125–138.

    Article  Google Scholar 

  14. Rodrigues H, Jacobs C, Guedes J, Bendsøe M (1999) Global and local material optimization applied to anisotropic bone adaptation. In: Perdersen P, Bendsoe MP (ed), Synthesis in Bio Solid Mechanics. Kluwer Academic Publishers.

    Google Scholar 

  15. Doblaré M, Garcia JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17.

    Article  Google Scholar 

  16. Coelho PG, Fernandes PR, Rodrigues HC, Cardoso JB and Guedes JM (2009) Numerical modeling of bone tissue adaptation – A hierarchical approach for bone apparent density and trabecular structure, J. Biomech. 42:830–837.

    Article  Google Scholar 

  17. Lucchinetti E (2001) Composite Model of Bone Properties. In: Cowin SC (ed) Bone Mechanics Handbook, 2nd Edition, CRC Press.

    Google Scholar 

  18. Guedes J, Kikuchi N, (1990) Preprocessing and postprocessing for materials based on the homogenisation method with adaptive finite element method. Comput Meth Appl Mech Eng 83:143–198.

    Article  MathSciNet  MATH  Google Scholar 

  19. Rodrigues H, Guedes J, Bendsøe M (2002) Hierarchical optimisation of material and structure. Int J Struct Multidisc Optim 24:1–10.

    Article  Google Scholar 

  20. Bendsøe MP, Sigmund O, (2003) Topology optimization theory, methods and applications. Springer, Berlin Heidelberg New York.

    Google Scholar 

  21. Martin RB, Burr DB, Sharkey NA (1998) Skeletal Tissue Mechanics. Springer-Verlag, NY.

    Google Scholar 

  22. Svanberg K (1987) The method of moving asymptotes – a new method for structural optimisation. Int J Numer Methods Eng 24:359–373.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fleury C (1989) CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optim 1:81–89.

    Article  Google Scholar 

  24. Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC, 2008. A hierarchical model for concurrent material and topology optimization of three-dimensional structures. Struct Multidisc Optim 35:107–115.

    Article  Google Scholar 

  25. Viceconti M, Casali M, Massari B, Cristofolini L, Bassini S, Toni A (1996) The ‘Standardized Femur Program’ Proposal for a Reference Geometry to be Used for The Creation of Finite Element Models of the Femur. J Biomech 29:1241.

    Article  Google Scholar 

  26. Bergmann G (1998) Hip98 – Loading of the hip joint. Free University of Berlin. Compact disc, ISBN 3980784800

    Google Scholar 

  27. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda G (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  Google Scholar 

  28. Coelho PG, Fernandes PR, Rodrigues HC (2010) Multiscale Modeling of Bone Tissue with Surface and Permeability Control, J. Biomech DOI:10.1016/j.jbiomech.2010.10.007

    Google Scholar 

  29. Ottosen NS, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Oxford

    Google Scholar 

  30. Gibson L, Ashby M (1988) Cellular Solids, Structure and Properties. Pergamon Press, Oxford, England.

    MATH  Google Scholar 

  31. Sigmund, O. (1999), On the optimality of bone structure. Proc. of IUTAM Symposium on Synthesis in Bio Solid Mechanics, Copenhagen, Denmark, 221–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder C. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media

About this chapter

Cite this chapter

Rodrigues, H.C., Coelho, P.G., Fernandes, P.R. (2011). Multiscale Modelling of Bone Tissue – Remodelling and Application to Scaffold Design. In: Fernandes, P., Bártolo, P. (eds) Advances on Modeling in Tissue Engineering. Computational Methods in Applied Sciences, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1254-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1254-6_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1253-9

  • Online ISBN: 978-94-007-1254-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics