Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

  • 2095 Accesses

Abstract

In quantum communication theory, one looks for the most efficient way to code information and construct a physical device (channel) in order to send information as completely as possible. There “quantum” means that we code information by quantum states and send it through a properly designed quantum device. If one can send any quantum state from an input system to an output system as it is, then it will be an ultimate way of information transmission. Such an ultimate method is not only ultimate for information transmission but also considered to enable sending matter existing in real world to other place without destroying itself which was a dream as in science fiction. In this chapter some protocols for quantum teleportation of states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accardi, L., Ohya, M.: Teleportation of general quantum states. In: Hida, T., Saito, K. (eds.) Quantum Information, pp. 59–70. World Scientific, Singapore (1999)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via Dual Classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  5. Fichtner, K.-H., Freudenberg, W.: Point processes and the position. distribution of infinite boson systems. J. Stat. Phys. 47, 959 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Fichtner, K.-H., Freudenberg, W.: Characterization of states of infinite Boson systems I. On the construction of states. Commun. Math. Phys. 137, 315–357 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Fichtner, K.-H., Freudenberg, W., Liebscher, V.: Time evolution and invariance of Boson systems given by beam splittings. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1(4), 511–531 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fichtner, K.-H., Ohya, M.: Quantum teleportation with entangled states given by beam splittings. Commun. Math. Phys. 222, 229–247 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Fichtner, K.-H., Miyadera, T., Ohya, M.: Fidelity of quantum teleportation by beam splittings. In: Proc. of International Symposium on Quantum Computing, vol. 3 (2001)

    Google Scholar 

  10. Fichtner, K.-H., Ohya, M.: Quantum teleportation and beam splitting. Commun. Math. Phys. 225, 67–89 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Fichtner, K.-H., Freudenberg, W., Ohya, W.: Teleportation scheme in infinite dimensional Hilbert space. J. Math. Phys. 46(10), 102103 (2005), 14 pp.

    Article  MathSciNet  ADS  Google Scholar 

  12. Halvorson, H.: The Einstein–Podolsky–Rosen state maximally violates Bell’s inequalities. Lett. Math. Phys. 53, 321 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Horodecki, R., Horodecki, M., Horodecki, P.: Teleportation, Bell’s inequalities and inseparability. quant-ph/9606027 (1996)

  14. Inoue, K., Ohya, M., Suyari, H.: Characterization of quantum teleportation by nonlinear quantum channel and quantum mutual entropy. Physica D 120, 117–124 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Janszky, J., Domokos, P., Szabo, S., Adam, P.: Quantum-state engineering via discrete coherent-state superpositions. Phys. Rev. A 51, 4191 (1995)

    Article  ADS  Google Scholar 

  16. Jozsa, R., Schumacher, B.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41, 2343–2349 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Kim, M., Son, W., Buzek, V., Knight, P.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 32323 (2002)

    Article  ADS  Google Scholar 

  18. Kossakowski, A., Ohya, M.: New scheme of quantum teleportation. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(3), 411–420 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lindsay, J.M.: Quantum and noncausal stochastic calculus. Probab. Theory Relat. Fields 97, 65 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Luis, A., Sanchez-Soto, L.: Phase-difference operator. Phys. Rev. A 48, 4702 (1993)

    Article  ADS  Google Scholar 

  21. Noh, J., Fougeres, A., Mandel, L.: Measurement of the quantum phase by photon counting. Phys. Rev. Lett. 67, 1426 (1991)

    Article  ADS  Google Scholar 

  22. Pegg, D., Barnett, S.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665 (1989)

    Article  ADS  Google Scholar 

  23. Tanaka, Y., Asano, M., Ohya, M.: A physical realization of quantum teleportation for non-maximal entangled state. Phys. Rev. A 82(2), 022308 (2010)

    Article  ADS  Google Scholar 

  24. Uhlmann, A.: The ‘transition probability’ in the state space of a-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Werner, R.F.: All teleportation and dense coding schemes. quant-ph/0003070 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Ohya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ohya, M., Volovich, I. (2011). Quantum Teleportation. In: Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0171-7_18

Download citation

Publish with us

Policies and ethics