Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter we give an introduction and classification on some examples of physical sensors (devices placed at the input of an instrumentation system that quantitatively measures a physical parameter, for example pressure, displacement or temperature) and chemical sensors (devices which are part of an instrumentation system that determines, typically, the concentration of a chemical substance, such as a toxic gas or oxygen), describing their working principles and main characteristic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Gopel, J. Hesse, J.H. Zemel (eds.), Fundamentals and General Aspects, Sensors: A Comprehensive Survey (Wiley VCH, Germany, 1996). ISBN 3527293299

    Google Scholar 

  2. S. Middelhock, S.A. Audet, P. French, Silicon Sensors (Academic, London, 2000)

    Google Scholar 

  3. S.D. Senturia, Microsystem Design (Kluwer, Boston, 2001). ISBN 9780792372462

    Google Scholar 

  4. R. Pall’as-Areny, J.G. Webster, Sensors and Signal Conditioning, 2nd edn. (Wiley Interscience, New York, 2001). ISBN 0471332321

    Google Scholar 

  5. J. Fraden, Handbook of Modern Sensors: Physics, Design and Applications, 3rd edn. (Springer, New York, 2003). ISBN 1441964657

    Google Scholar 

  6. S.M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2007). ISBN 9780471143239

    Google Scholar 

  7. A. D’Amico, C. Di Natale, Introduzione ai sensori (Aracne, Roma, 2008). ISBN 9788854816633

    Google Scholar 

  8. A. DAmico, C. Di Natale, A contribution on some basic definitions of sensors properties. IEEE Sensors J. 1(3), 183–190 (2001)

    Google Scholar 

  9. R.C. Dorf, The Electrical Engineering Handbook (CRC Press LLC, Boca Raton, 2000). ISBN 0849385741

    Google Scholar 

  10. G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Integrated Architectures for Sensor Interfaces, Electronics World, Nov 2002, Vol. 108, pp. 12–20

    Google Scholar 

  11. L. Zhao, E.M. Yeatman, Inherently digital micro capacitive tilt sensor for low power motion detection, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 621–624

    Google Scholar 

  12. Y.H. Hsueh, J.H. Lin, Low power integrated capacitive pressure microsensor design, in Proceedings of Eurosensors 2008, Dresden, Sept 2008, pp. 284–287

    Google Scholar 

  13. C. Hierold, B. Clasbrummel, D. Behrend, T. Scheiter, M. Steger, K. Oppermann, H. Kapels, E. Landgraf, D. Wenzel, D. Etzrodt, Low power integrated pressure sensor system for medical applications. Sensor Actuat A 73(1–2), 58–67 (1999)

    Article  Google Scholar 

  14. L. Löfgren, B. Löfving, T. Pettersson, B. Ottosson, S. Haasl, C. Rusu, K. Persson, O. Vermesan, N. Pesonen, P. Enoksson, Low-power humidity sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 231–234

    Google Scholar 

  15. C. Falconi, E. Martinelli, C. Di Natale, A. DAmico, F. Maloberti, P. Malcovati, A. Baschirotto, V. Stornelli, G. Ferri, Electronic Interfaces. Sensor Actuat B 121, 295–329 (2007)

    Google Scholar 

  16. J. Huijsing, Integrated smart sensors. Sensor Actuat A 30, 167–174 (1992)

    Article  Google Scholar 

  17. M. Landwehr, H. Grätz, A low-power, low-area, delay-line based CMOS temperature sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1392–1394

    Google Scholar 

  18. T.G. Constandinou, J. Georgiou, C. Toumazou, Micropower front-end interface for differential capacitive sensor systems. IET Electron. Lett. 44(7), 470–472 (2008)

    Article  Google Scholar 

  19. S.S.W. Chan, P.C.H. Chan, A resistance-variation tolerant constant-power heating circuit for integrated sensor applications. IEEE J. Solid-St. Circ. 34(4), 432–437 (1999)

    Article  Google Scholar 

  20. M. Grassi, P. Malcovati, A.Baschirotto, A high-precision wide-range front-end for resistive gas sensor arrays, in Proceedings of Eurosensors, Rome, Sept 2004

    Google Scholar 

  21. G. Ferri, N. Guerrrini, V. Stornelli, C. Catalani, A novel CMOS temperature control system for resistive gas sensor array, Proceedings of ECCTD, Cork, 2005, pp. 351–354

    Google Scholar 

  22. A. Gerosa, A. Maniero, A. Neviani, A fully integrated two-channel A/D interface for the acquisition of cardiac signals in implantable pacemakers. IEEE J. Solid-St. Circ. 39(7), 1083–1093 (2004)

    Article  Google Scholar 

  23. S. Pennisi, High-performance and simple CMOS interface circuit for differential capacitive sensors. IEEE T. Circuits II 52(6), 322–326 (2005)

    Google Scholar 

  24. J.R. Kaienburg, M. Huonker, R. Schellin, Surface micromachined bridge configurations for accurate angle measurements, in IEEE Internationl Conference on Microelectromechanical Systems, Miyazaki, Jan 2000, pp. 120–125

    Google Scholar 

  25. M. Cicioni, L. Bissi, P. Placidi, A. Shehu, A. Scorzoni, E. Cozzani, I. Elmi, S. Zampolli, G.C. Cardinali, Interface circuit for an ultra low power gas sensor, in IEEE Instrumentation and Measurement Technology Conference, Singapore, May 2009, pp. 254–258

    Google Scholar 

  26. L. Bissi, M. Cicioni, P. Placidi, S. Zampolli, I. Elmi, A. Scorzoni, A programmable interface circuit for an ultralow power gas sensor. IEEE T. Instrum. Meas. 99, 1–8 (2010)

    Google Scholar 

  27. H. Baltes, A. Häberli, P. Malcovati, F. Maloberti, Smart sensor interfaces DOI: dx.doi.org. Proc. IEEE Int. Symp. Circ. Syst. 4, 380–383 (2006). Atlanta

    Google Scholar 

  28. M.A.P. Pertijs, K.A.A. Makinwa, J.H. Huijsing, A CMOS smart temperature sensor with a 3s inaccuracy of ± 0.1 ∘ C from − 55 ∘ C to 125 ∘ C. IEEE J. Solid-St. Circ. 40(12), 2805–2815 (2005)

    Google Scholar 

  29. M.A.P. Pertijs, A.L. Aita, K.A.A. Makinwa, J.H. Huijsing, Voltage calibration of smart temperature sensors, Proc. of IEEE Sensors, Lecce, Oct 2008, pp. 756–759

    Google Scholar 

  30. M.A.P. Pertijs, G.C.M. Meijer, J.H. Huijsing, Precision temperature measurement using CMOS substrate pnp transistors. IEEE Sens. J. 4(3), 294–300 (2004)

    Article  Google Scholar 

  31. M. Malfatti, M. Peronzoni, N. Viarani, A. Simoni, L. Lorenzelli, A. Baschirotto, A complete front-end system read-out and temperature control for resistive gas sensor array. IEEE Eur. Conf. Circ. Theor. Des. 3, 31–34 (2005)

    Google Scholar 

  32. H. Baltes, CMOS as sensor technology. Sensor Actuat A 3738, 51–56 (1993)

    Article  Google Scholar 

  33. H. Baltes, D. Moser, E. Lenggenhager, O. Brand, D. Jaeggi, Thermomechanical microtransducers by CMOS and micromachining micromechanical sensors, in Actuators and Systems, DSC-32, (ASME, New York, 1991), pp. 61–75

    Google Scholar 

  34. H. Baltes, O. Brand, CMOS-based microsensors and packaging. Sensor Actuat A 92(1–3), 1–9 (2001)

    Article  Google Scholar 

  35. A. Baschirotto, P. Malcovati, Technology-driven alternatives for smart sensor interfaces, in Sensors Update, ed. by H. Baltes, G. Fedder, J. Korvink (Wiley-VCH, Weinhein, 2003), Vol. 13, pp. 45–81

    Google Scholar 

  36. G.C.M. Meijer, G. Wang, F. Fruett, Temperature sensors and voltage references implemented in CMOS technology. IEEE Sens. J. 1(3), 225–234 (2001)

    Article  Google Scholar 

  37. C. Falconi, J. Huijsing, Curvature correction of bandgap references for low cost integrated sensors systems, in Proceedings of Eurosensors, Prague, 2003

    Google Scholar 

  38. G. Wang, G.C.M. Meijer, The temperature characteristics of bipolar transistors fabricated in CMOS technology. Sensor Actuat A 87, 81–89 (2000)

    Article  Google Scholar 

  39. C. Zhang, T. Yin, Q. Wu, H. Yang, A large dynamic range CMOS readout circuit for MEMS vibratory gyroscope, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 1123–1126

    Google Scholar 

  40. W.L. Liu, S.J. Chen, C.H. Shen, Sensitivity improvement of thermal conduction CMOS based accelerometer, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 407–410

    Google Scholar 

  41. C. Liang Dai, M. Chen Liu, Nanoparticle SnO2 gas sensor with circuit and microheater on chip fabricated using CMOS-MEMS technique, in IEEE Nano-Micro Engineered and Molecular Systems and Conference, Thailand, 2007, pp. 959–963

    Google Scholar 

  42. C.T. Ko, S.H. Tseng, M.S.C. Lu, A CMOS micromachined capacitive tactile sensor with high frequency output. IEEE J. Microelectromech Syst. 15(6), 1708–1714 (2006)

    Article  Google Scholar 

  43. S.H. Tseng, P.C. Wu, Y.Z. Juang, M.S.C. Lu, A CMOS MEMS thermal sensor with high frequency output, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 387–390

    Google Scholar 

  44. C.L. Dai, Y.W. Tai, P.H. Kao, Modeling and fabrication of micro FET pressure sensor with circuits. Sensors 7, 3386–3398 (2007)

    Article  Google Scholar 

  45. G.M. Lazzerini, M. Dei, P. Bruschi, M. Piotto, VHDL-AMS modeling of an integrated gas flow sensor readout channel with pressure compensation, in Proceedings of PRIME 2007, Bordeaux, 2007, pp. 141–144

    Google Scholar 

  46. A. Lombardi, M. Grassi, L. Bruno, P. Malcovati, A. Baschirotto, A fully integrated interface circuit for 1. 5 ∘ C accuracy temperature control and 130-dB dynamic-range read-out of MOX gas sensors, in 34th European Solid-State Circuits Conference, Sept 2008, pp. 78–81

    Google Scholar 

  47. A. Lombardi, L. Bruno, M. Grassi, P. Malcovati, S. Capone, L. Francioso, P. Siciliano, A. Baschirotto, Integrated read-out and temperature control interface with digital I/O for a gas-sensing system based on a SnO2 microhotplate thin film gas sensor, in Proceedings of IEEE Sensors, Lecce, Oct 2008, pp. 596–599

    Google Scholar 

  48. M. Piotto, M. Dei, P. Bruschi, An interface circuit for thermal gas flow meters with compensation of pressure effects, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 433–436

    Google Scholar 

  49. M. Grassi, P. Malcovati, A. Baschirotto, A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-St. Circ. 42, 1543–1554 (2007)

    Article  Google Scholar 

  50. Internet resource: http://en.wikipedia.org/wiki/Electret

  51. Internet resource: http://www.electrets.org/html/overview.html

  52. D.F. Da Silva, D. Acosta-Avalos, Light dependent resistance as a sensor in spectroscopy setups using pulsed light and compared with electret microphones. Sensors 6, 514–525 (2006)

    Article  Google Scholar 

  53. X. Qiu, Patterned piezo-, pyro- and ferroelectricity of poled polymer electrets. J. Appl. Phys. 108(1), 011101-011101–19 (2010)

    Google Scholar 

  54. S. Kon, K. Oldham, R. Horowitz, Piezoresistive and Piezoelectric MEMS Strain Sensors for Vibration Detection, in Proceedings of SPIE, part 2, N. 65292V, 2007

    Google Scholar 

  55. M. Pohanka, O. Pavliš, P. Skládal, Rapid characterization of monoclonal antibodies using the piezoelectric immunosensor. Sensors 7, 341–353 (2007)

    Article  Google Scholar 

  56. M. Stobiecka, J.M. Cieśla, B. Janowska, B. Tudek, H. Radecka, Piezoelectric sensor for determination of genetically modified Soybean Roundup Ready in samples not amplified by PCR. Sensors 7, 1462–1479 (2007)

    Article  Google Scholar 

  57. M. Pohanka, F. Treml, M. Hubálek, H. Band’ouchová, M. Beklová, J. Pikula, Piezoelectric biosensor for a simple serological diagnosis of tularemia in infected European Brown Hares. Sensors 7, 2825–2834 (2007)

    Google Scholar 

  58. S. Noimanee, T. Tunkasiri, K. Siriwitayakorn, J. Tantrakoon, Design considerations for aural vital signs using PZT piezoelectric ceramics sensor based on the computerization method. Sensors 7, 3192–3208 (2007)

    Article  Google Scholar 

  59. D. Ortega, J.S. Garitaonandia, C. Barrera-Solano, M. Domínguez, Ferromagnetic resonance of nanocomposites based on iron oxides. Sensor Lett. 5, 69–72 (2007)

    Article  Google Scholar 

  60. V.A. Chernenko, S. Besseghini, P. Müllner, G. Kostorz, J. Schreuer, M. Krupa, Ferromagnetic shape memory materials: Underlying physics and practical importance. Sensor Lett. 5, 229–233 (2007)

    Article  Google Scholar 

  61. A. Platil, J. Tomek, P. Kaspar, Characterization of ferromagnetic powders for magnetopneumography and other applications. Sensor Lett. 5, 311–314 (2007)

    Article  Google Scholar 

  62. J. Guyonnet, H. Bea, P. Paruch, Lateral piezoelectric response across ferroelectric domain walls in thin films. J. Appl. Phys. 108(4), 042002-042002–11 (2010)

    Google Scholar 

  63. K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Optimal configuration of microstructure in ferroelectric materials by stochastic optimization. J. Appl. Phys. 108(2), 024101–10 (2010)

    Article  Google Scholar 

  64. G.A. Salvatore, L. Lattanzio, D. Bouvet, I. Stolichnov, N. Setter, A.M. Ionescu, Ferroelectric transistors with improved characteristics at high temperature. Appl. Phys. Lett. 97(5), 053503-053503–3 (2010)

    Google Scholar 

  65. SB. Lang, J.C. Lashley, K.A. Modic, R.A. Fisher, W.M. Zhu, Z.G. Ye, Specific heat of a ferroelectric PZT ceramic at the morphotropic phase boundary, in 15th IEEE Mediterranean Electrotechnical Conference, Valletta, April 2010, pp. 23–25

    Google Scholar 

  66. X.W. Dong, S. Dong, K.F. Wang, J.G. Wan, J.M. Liu, Enhancement of ferroelectricity in Cr-doped HO2Ti2O7. Appl. Phys. Lett. 96(24), 242904-242904–3 (2010)

    Google Scholar 

  67. A. Cano, D. Jimenez, Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97(13), 133509-133509–3 (2010)

    Google Scholar 

  68. W.L. Lew, J.A. Ole Farmer, M.C. Crowe, C.T. Campbell, Improved pyroelectric detectors for single crystal adsorption calorimetry from 100 to 350 K. Rev. Sci. Instrum. 81(2), 024102-024102–9 (2010)

    Google Scholar 

  69. M. Schossig, V. Norkus, G. Gerlach, Infrared responsivity of pyroelectric detectors with nanostructured NiCr thin-film absorber. IEEE Sens. J. 10(10), 1564–1565 (2010)

    Article  Google Scholar 

  70. P. Zappi, E. Farella, L. Benini, Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sens. J. 10(9), 1486–1494 (2010)

    Article  Google Scholar 

  71. Q. Hao, F. Hu, Y. Xiao, Multiple human tracking and identification with wireless distributed pyroelectric sensor systems. IEEE Syst. J. 3(4), 428–439 (2009)

    Article  Google Scholar 

  72. W. Tornow, S.M. Lynam, S.M. Shafroth, Substantial increase in acceleration potential of pyroelectric crystals. J. Appl. Phys. 107(6), 063302-063302–4 (2010)

    Google Scholar 

  73. J. Wooldridge, J.F. Blackburn, N.L. McCartney, M. Stewart, P. Weaver, M.G. Cain, Small-scale piezoelectric devices: Pyroelectric contributions to the piezoelectric response. J. Appl. Phys. 107(10), 10118-104118–6 (2010)

    Google Scholar 

  74. A.N. Morozovska, E.A. Eliseev, G.S. Svechnikov, S.V. Kalinin, Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. J. Appl. Phys. 108(4), 042009-042009–6 (2010)

    Google Scholar 

  75. J. Zhang, M.W. Cole, S.P. Alpay, Pyroelectric properties of barium strontium titanate films: Effect of thermal stresses. J. Appl. Phys. 108(5), 054103-054103–7 (2010)

    Google Scholar 

  76. S. Gundogdu, O. Sahin, E.M.I. effects of cathodic protection on electromagnetic flowmeters. Sensors 7, 75–83 (2007)

    Google Scholar 

  77. C. Israel, S. Kar-Narayan, N.D. Mathur, Eliminating the temperature dependence of the response of magnetoelectric magnetic-field sensors. IEEE Sens. J. 10(5), 914–917 (2010)

    Article  Google Scholar 

  78. J.G. Lu, P. Chang, Z. Fan, Quasi-one-dimensional metal oxide materials. Synthesis, properties and applications. Mater. Sci. Eng. 52, 49–91 (2006)

    Google Scholar 

  79. I. Sayago, M.C. Horrillo, S. Baluk, M. Aleixandre, M.J. Fernandez, L. Ares, M. Garcia, J.P. Santos, J. Gutierrez, Detection of toxic gases by a tin oxide multisensor. IEEE Sens. J. 2, 387–393 (2002)

    Article  Google Scholar 

  80. T. Sahm, L. Mädler, A. Gurlo, N. Barsan, U. Weimar, A. Roessler, S. E. Pratsinis, High performance porous metal oxide sensors via single step fabrication, in Proceedings of Eurosensors, Barcelona, Sept 2005

    Google Scholar 

  81. A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, E. Sisinni, S. Rocchi, V. Vignoli, CO detection by MOX sensors exploiting their dynamic behavior, in Proceedings of Eurosensors, Dresden, Oct 2008, pp. 1070–1073

    Google Scholar 

  82. A. Fort, M. B. Serrano-Santos, R. Spinicci, N. Ulivieri, V. Vignoli, Electronic noses based on metal oxide gas sensors: the problem of selectivity enhancement, Proceedings of IEEE Instrumentation and Measurement Technology Conference - IMTC 2004, Como, May 2004, pp. 599–604

    Google Scholar 

  83. G. Sberveglieri, E. Comini, G. Faglia, M.Z. Atashbar, W. Wlodarski, Titanium dioxide thin films prepared for alcohol microsensor applications. Sensor Actuat B 66(1–3), 139–141 (2000)

    Article  Google Scholar 

  84. A. Delan, A. Karuppasamy, E. Schultheiß, Gas sensing properties of pure and doped (n, c) TiO2 thin films grown by pulsed DC magnetron sputtering, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 844–847

    Google Scholar 

  85. S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A.P. Baddorf, Y. Lilach, M. Moskovits, A. Kolmakov, Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. J. Appl. Phys. 98, 044503–8 (2005)

    Article  Google Scholar 

  86. Y.X. Chen, L.J. Campbell, W.L. Zhou, Self-catalytic branch growth of SnO2 nanowire junctions. J. Cryst. Growth 270, 505–510 (2004)

    Article  Google Scholar 

  87. D. Calestani, M. Zha, G. Salviati, L. Lazzarini, L. Zanotti, E. Comini, G. Sberveglieri, Nucleation and growth of SnO2 nanowires. J. Cryst. Growth 275, 2083–2087 (2005)

    Article  Google Scholar 

  88. M.R. Yang, S.Y. Chu, R.C. Chang, Synthesis and study of the SnO2 nanowires growth. Sensor Actuat B 122, 269–273 (2007)

    Article  Google Scholar 

  89. J.K. Jian, X.L. Chen, W.J. Wang, L. Dai, Y.P. Xu, Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites. Appl. Phys. 76, 291–294 (2003)

    Article  Google Scholar 

  90. D.F. Zhang, L.D. Sun, G. Xu, C.H. Yan, Sizecontrollable one-dimensional SnO2 nanocrystals: Synthesis, growth mechanism and gas sensing property. Phys. Chem. Chem. Phys. 8, 4874–4880 (2006)

    Article  Google Scholar 

  91. Y.J. Chen, X.Y. Xue, Y.G. Wang, T.H. Wang, Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl. Phys. Lett. 87, 233503–3 (2005)

    Article  Google Scholar 

  92. S. Kumar, S. Rajaraman, R.A. Gerhardt, Z.L. Wang, P.J. Hesketh, Tin oxide nanosensor fabrication using AC dielectrophoretic manipulation of nanobelts. Electrochim. Acta 51, 943–951 (2005)

    Article  Google Scholar 

  93. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)

    Article  Google Scholar 

  94. Q. Wan, T.H. Wang, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application. Chem. Commun. 14, 3841–3843 (2005)

    Article  Google Scholar 

  95. N.S. Ramgir, I.S. Mull, K.P. Vijayamohanan, A room temperature nitric oxide sensor actualized from rudoped SnO2 nanowires. Sensor Actuat B 107, 708–715 (2005)

    Article  Google Scholar 

  96. L.H. Qian, K. Wang, Y. Li, H.T. Fang, Q.H. Lu, X.L. Ma, CO sensor based on Au-decorated SnO2 nanobelt. Mater. Chem. Phys. 100, 82–84 (2006)

    Article  Google Scholar 

  97. E. Comini, G. Faglia, G. Sberveglieri, D. Calestani, L. Zanotti, M. Zha, Tin oxide nanobelts electrical and sensing properties. Sensor Actuat B 111112, 2–6 (2005)

    Article  Google Scholar 

  98. Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, J.H. Lee, Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19, 095508–4 (2008)

    Article  Google Scholar 

  99. N. Van Hieu, N. Duc Chien, Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor, in Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1270–1273

    Google Scholar 

  100. A. Ponzoni, C. Baratto, S. Bianchi, E. Comini, M. Ferroni, M. Pardo, M. Vezzoli, A. Vomiero, G. Faglia, G. Sberveglieri, Metal oxide nanowire and thin-film-based gas sensors for chemical warfare simulants detection. IEEE Sens. J. 8(6), 735–742 (2008)

    Article  Google Scholar 

  101. G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Vomiero, Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices, 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand. Jan 2007, pp. 227–229

    Google Scholar 

  102. S. Zhang, X. Xia, C. Xie, S. Cai, H. Li, D. Zeng, A method of feature extraction on recovery curves for fast recognition application with metal oxide gas sensor array. IEEE Sens. J. 9(12), 1705–1710 (2009)

    Article  Google Scholar 

  103. S. Bicelli, A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, V. Vignoli, S. Rocchi, Model and experimental characterization of the dynamic behavior of low-power carbon monoxide MOX sensors operated with pulsed temperature profiles. IEEE Trans. Instrum. Meas. 58(5), 1324–1332 (2009)

    Article  Google Scholar 

  104. M. Messina, F. Franze, N. Speciale, E. Cozzani, A. Roncaglia, Thermofluid analysis of ultra low power hotplates for a MOX gas sensing device. IEEE Sens. J. 9(5), 504–511 (2009)

    Article  Google Scholar 

  105. A. Hackner, A. Habauzit, G. Muller, E. Comini, G. Faglia, G. Sberveglieri, Surface ionization gas detection on platinum and metal oxide surfaces. IEEE Sens. J. 9(12), 1727–1733 (2009)

    Article  Google Scholar 

  106. J. Courbat, D. Briand, L. Yue, S. Raible, N.F. De Rooij, Ultra-low power metal-oxide gas sensor on plastic foil, International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers, Denver, June 2009, pp. 584–587

    Google Scholar 

  107. S. Bicelli, A. Depari, G. Faglia, A. Flammini, A. Fort, M. Mugnaini, A. Ponzoni, V. Vignoli, Model and experimental characterization of dynamic behaviour of low power Carbon Monoxide MOX sensors with pulsed temperature profile, in Proceedings of IEEE Instrumentation and Measurement Technology Conference - IMTC, Victoria, May 2008, pp. 1413–1418

    Google Scholar 

  108. I. Elmi, S. Zampolli, E. Cozzani, M. Passini, G. Pizzochero, G. C. Cardinali, M. Severi, Ultra low power MOX sensors with ppb-level VOC detection capabilities, Proceedings of IEEE Sensors, Oct 2007, pp. 170–173

    Google Scholar 

  109. S. Bicelli, A. Flammini, A. Depari, D. Marioli, A. Ponzoni, G. Sberveglieri, A. Taroni, Low-power carbon monoxide MOX sensors for wireless distributed sensor networks, in Proceedings of IEEE Instrumentation and Measurement Technology Conference, May 2007, pp. 1–5

    Google Scholar 

  110. J. Frank, M. Fleischer, H. Meixner, Gas-sensitive electrical properties of pure and doped semiconducting Ga2O3 thick films. Sensor Actuat B 48(1–3), 318–321 (1998)

    Article  Google Scholar 

  111. K. Sahner, M. Fleischer, E. Magori, H. Meixner, J. Deerberg, R. Moos, HC-sensor for exhaust gases based on semiconducting doped SrTiO3 for on-board diagnosis. Sensor Actuat B 114(2), 861–868 (2006)

    Article  Google Scholar 

  112. D. Biskupski, K. Wiesner, R. Moos, M. Fleischer, Automotive exhaust gas sensor based on a combination of electrochemical pumping cell and resistive gas sensor, Proceedings of Eurosensors, Dresden, Sept 2008, pp. 1288–1289

    Google Scholar 

  113. Internet resource: http://www.sensorsmag.com/sensors/humidity-moisture/choosing-a-humidity-sensor-a-review-three-technologies-840

  114. A. Oprea, N. Barsan, U. Weimar, M. L. Bauersfeld, D. Ebling, Capacitive humidity sensors on flexible RFID labels, Solid-State Sensors, Actuators and Microsystems International Conference, Transducers, Lyon, 2007, pp. 2039–2042

    Google Scholar 

  115. M. Hernaez, C.R. Zamarreño, I. Del Villar, F.J. Arregui, I.R. Matias, Optical fiber humidity sensor based on lossy mode resonances. Int. J. Smart Sens. Intell. Syst. 2(4), 653–660 (2009)

    Google Scholar 

  116. Z. Chen, C. Lu, Humidity sensors: A review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  117. C.Y. Lee, G.B. Lee, Humidity sensors: A review. Sensor Lett. 3, 1–15 (2005)

    Article  Google Scholar 

  118. Internet resource: http://www.sensorland.com/HowPage047.html

  119. Internet resource: http://www.sensirion.com/en/01_humidity_sensors/00_humidity_sensors.htm

  120. M. Havelková, T. Randák, V. Žlábek, J. Krijt, H. Kroupová, J. Pulkrabová, Z. Svobodová, Biochemical markers for assessing aquatic contamination. Sensors 7, 2599–2611 (2007)

    Article  Google Scholar 

  121. M. Strlič, I.K. Cigić, J. Kolar, G. de Bruin, B. Pihlar, Non-destructive evaluation of historical paper based on pH estimation from VOC emissions. Sensors 7, 3136–3145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Marcellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

De Marcellis, A., Ferri, G. (2011). Physical and Chemical Sensors. In: Analog Circuits and Systems for Voltage-Mode and Current-Mode Sensor Interfacing Applications. Analog Circuits and Signal Processing. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9828-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9828-3_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9827-6

  • Online ISBN: 978-90-481-9828-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics