Skip to main content

Border Zones of Ecology and Systems Theory

  • Chapter
  • First Online:
Ecology Revisited

Abstract

For many years now, proponents of systems theory and advocates of ecology have been engaged in an intense exchange of ideas, principles, concepts, theories, models, and methods. The dynamics of this exchange have given a boost to both fields. Individual pioneers (such as Eugene and Howard Odum) and innovative organisations (such as the Santa Fé Institute) have spurred on this reciprocal concept transfer. Ecology and systems theory thus form two research fields which are only partially separated and which display powerful internal dynamics and borders that are permeable from several sides. Both research areas are, however, riddled with controversy. Heterogeneous discourses have developed in both fields, each of these discourses possessing its own specific cognitive and social order, along with the corresponding theoretical concepts and scientific practices to match. While each discourse has its own history, the history of the relationship between the two remains unwritten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This process will henceforth be referred to as “concept transfer”.

  2. 2.

    It would be highly instructive from an historical point of view to examine exactly what role the ecologist Evelyn Hutchinson played in the development of early cybernetics (Taylor 1988; Heims 1991; Schwarz and Schwoerbel 2001; Pias 2003). At any rate, cybernetics’ central concept of “circular causality” was certainly influenced strongly by Hutchinson.

  3. 3.

    Apart from the ecological import of Lotka’s ideas, his book also anticipated Ludwig von Bertalanffy’s development of General Systems Theory in the 1950s. Bertalanffy rather ungenerously downplayed the similarities between his method and Lotka’s, but Lotka had clearly set down the basic procedure of systems analysis first (Kingsland 1985, p. 26.).

  4. 4.

    In the philosophy of mathematics and quantum theory, this debate was played out in the contrast between “Platonist” and “constructivist” views (Stegmüller 1978; Khlentzos 2004).

  5. 5.

    This approach attempts to define all existing concepts in terms of operations and to relate them strictly to “communication” as a point of both departure and of reference (Luhmann 1997). Whether or not this has led to a renewal of sociology’s explanatory foundations, as claimed by its adherents, has been the subject of heated debate for a number of years (cf. Merz-Benz and Wagner 2000; Clam 2002).

  6. 6.

    In 1950 Carl G. Hempel had already rejected the empirical relevance of GST and labeled it as “a branch of pure mathematics” (Hempel 1951, p. 314-15). In later works he then argued against simulation methods, against the functional explanation, against suggestions of isomorphism, and against the emergence thesis (Hempel 1965). Müller (1996 p. 245ff) provides a summary of the dispute over the empirical content and explanatory power of GST.

  7. 7.

    In research practice, and especially in the analysis of ecological data, this is happening more and more. In landscape ecology, the methods of fractal geometry have maintained their hold (Turner and Gardner (1991)), while population ecology uses object-oriented modelling methods (Breckling 2004). In ecological research, techniques such as Petri-Nets (Gnauck 2001) are available. Techniques from the fields of machine learning and data mining are applicable in structure identification and analysis of large data sets (Dzeroski et al. 1994; Dzeriski 1995). Admittedly, these techniques did not originate in pure mathematics; they do, however, utilise formal descriptions.

  8. 8.

    The Lotka-Volterra equations from the late 1920s applied this principle – and Verhulst’s (1838) growth equation from the mid-1800s anticipated such a formalization. Set theory provides a consistent basis for the possibility of mathematically representing specific connections between related entities.

  9. 9.

    One can illustrate a related scenario in hydrobiology: Fish can be organized in two categories: those that are cannibalistic and eat their own kind if they happen to become accessible, and those that do not do this. And then there are species-specific trophic preferences. There may be a category of predatory fish that feeds only on those other fish that do not consume their own fry. What would a fish of that category do if one of its own offspring appeared in front of it? This setting is an ecological disguise of Russell’s famous barber paradox. The poor fish cannot take up either option without becoming entangled in a net of contradictions – consuming its fry would violate the condition of not consuming it, and not consuming it would qualify the fry for consumption...

References

  • Begon M, Harper JL, Townsend CR (1986) Ecology. Individuals, populations and communities. Blackwell, Sunderland

    Google Scholar 

  • Breckling B (2004) Individuenbasierte Modellierung – Entwicklungshintergrund und Anwendung einer ökologischen Modellierungsstrategie. In: Fränzle O, Müller F, Schröder W (eds) Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung, V–2.3. Ecomed, Landsberg am Lech, pp 2–25

    Google Scholar 

  • Breckling B, Müller F (2003) Der Ökosystembegriff aus heutiger Sicht – Grundstrukturen und Funktionen von Ökosystemen. In: Fränzle O, Müller F, Schröder W (eds) Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung, II–2.2. Ecomed, Landsberg am Lech, pp 1–21

    Google Scholar 

  • Cantor G (1895) Beiträge zur Begründung der transfiniten Mengenlehre, Mathematische Annalen XLVL, pp 481–512

    Google Scholar 

  • Castoriadis C (1981) Durchs Labyrinth. Seele, Vernunft, Gesellschaft. Europäische Verlagsgesellschaft, Frankfurt a.M

    Google Scholar 

  • Clam J (2002) Was heißt, sich an Differenz statt an Identität orientieren? Zur De-ontologisierung in Philosophie und Sozialwissenschaft. Universitätsverlag Konstanz, Konstanz

    Google Scholar 

  • DeAngelis DL, Gross LJ (eds) (1992) Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman & Hall, London

    Google Scholar 

  • Dzeroski S, Dehaspe L, Ruck B, Walley W (1994) Classification of river water quality data using machine learning, Proceedings of the 5th international conference on the development and application of computer techniques to environmental studies, vol 1. Computational Mechanics Publications, Southhampton, pp 129–137

    Google Scholar 

  • Dzeriski S (1995) Inductive logic programming and knowledge discovery in databases. In: Fayyad G, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. MIT Press, Cambridge, pp 118–152

    Google Scholar 

  • Fränzle O (1998) Grundlagen und Entwicklung der Ökosystemforschung. In: Fränzle O, Müller F, Schröder W (eds) Handbuch der Umweltwissenschaften. Grundlagen und Anwendungen der Ökosystemforschung, II–2.1. Ecomed, Landsberg am Lech, pp 1–24

    Google Scholar 

  • Frege G (1893) Grundgesetze der Arithmetik. Hermann Pohle Verlag, Jena

    Google Scholar 

  • Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley, New York

    Google Scholar 

  • Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik. Akademische Verlagsgesellschaft, Leipzig 38. pp 173–198

    Google Scholar 

  • Gnauck A (2001) Kontinuierlich oder diskret? Zur Verwendung von Petrinetzen in der ökologischen Modellierung, Simulationstechnik. Gruner Druck GmbH, Erlangen, pp 453–458, ASIM 2001 Paderborn

    Google Scholar 

  • Hall AD, Fagen RE (1956) Definition of system: general systems. In: Bertalanffy LV, Rappoport A (eds) Year book of the society for the Advancement of General Systems Theory, Vol I, Ann Arbor, Mich, pp 18–28

    Google Scholar 

  • Hammond D (2003) The science of synthesis: exploring the social implications of general systems theory. University Press of Colorado, Boulder

    Google Scholar 

  • Harries-Jones P (1995) A recursive vision: ecological understanding and Gregory Bateson. University of Toronto Press, Toronto

    Google Scholar 

  • Heims SJ (1991) The cybernetics group. MIT Press, Cambridge

    Google Scholar 

  • Hempel CG (1951) General system theory and the unity of science. Hum Biol 23:313–322

    PubMed  CAS  Google Scholar 

  • Hempel CG (1965) Philosophy of the natural science. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Hesse H (2002) Zur Konstitution naturwissenschaftlicher Gegenstände insbesondere in der Biologie. In: Lotz A, Gnädinger J (eds) Wie kommt die Ökologie zu ihren Gegenständen? Gegenstandskonstitution und Modellierung in den ökologischen Wissenschaften. Peter Lang, Frankfurt a.M, pp 117–127

    Google Scholar 

  • Hoffmeyer J (2008) Biosemiotics: an examination into the signs of life and the life of signs. Scranton University Press, Scranton

    Google Scholar 

  • Khailov KM (1964) The problem of systemic organization in theoretical biology. Gen Syst 9:151–157

    Google Scholar 

  • Khlentzos D (2004) Naturalistic realism and the rntirealistic challenge. MIT Press, Cambridge

    Google Scholar 

  • Kingsland SE (1985) Modelling nature: episodes in the history of population ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Klir GJ (ed) (1972) Trends in general systems theory. Wiley-Interscience, New York

    Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Luhmann N (1997) Die Gesellschaft der Gesellschaft. Suhrkamp, Frankfurt a.M

    Google Scholar 

  • Maturana HR, Varela FJ (1992) Tree of knowledge: biological roots of human understanding. Shambul Publications, Boston

    Google Scholar 

  • McIntosh RP (1985) The background of ecology: concept and theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinhard H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  • Meinhard H, Gierer A (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  Google Scholar 

  • Merz-Benz P-U, Wagner G (eds) (2000) Die Logik der Systeme. Kritik der systemtheoretischen Soziologie Niklas Luhmanns. Universitätsverlag Konstanz, Konstanz

    Google Scholar 

  • Mesarovic MD (1972) A mathematical theory of general systems. In: Klir GJ (ed) Trends in general systems theory. Wiley-Interscience, New York, pp 251–269

    Google Scholar 

  • Müller K (1996) Allgemeine Systemtheorie. Geschichte, Methodologie und sozialwissenschaftliche Heuristik eines Wissenschaftsprogramms. Westdeutscher Verlag, Opladen

    Google Scholar 

  • Odum EP (1971 (1953)) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  • Odum HT (1983) Systems ecology: an introduction. Wiley, New York

    Google Scholar 

  • Pias C (ed) (2003) Cybernetics: the Macy conferences 1946–1953, vol 1, Transactions. Diaphanes, Zürich

    Google Scholar 

  • Prigogine Ilya, Isabelle Stengers (1981) Dialog mit der Natur. Piper, München

    Google Scholar 

  • Rheinberger H-J (1997) Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford University Press, Stanford

    Google Scholar 

  • Schwarz AE, Schwoerbel J (2001) George Evelyn Hutchinson. In: Jahn I, Schmitt M (eds) Klassiker der Biologie, Band 2. Beck, München, pp 215–232

    Google Scholar 

  • Stegmüller W (1978) Das Universalien-Problem. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Sukachev VN (1964) Basic concepts. In: Sukachev VN, Dylis NV (eds) Fundamentals of forest biogeocoenology. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Taylor PJ (1988) Technocratic optimism, H.T. Odum, and the partial transformation of ecological metaphor after world war II. J Hist Biol 21:213–244

    Article  PubMed  CAS  Google Scholar 

  • Trepl L (1987) Geschichte der Ökologie. Vom 17. Jahrhundert bis zur Gegenwart. Athenäum, Frankfurt a.M

    Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Turner MG, Gardner RH (1991) Quantitative methods in landscape ecology. Springer, New York

    Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corr Math Phys 10(113):121

    Google Scholar 

  • Volterra V (1926) Variazione e fluttuazioni del numero d’individui in specie animali convivienti. Mem Acad Lincei 6(2):31–113

    Google Scholar 

  • von Bertalanffy L (1932) Theoretische Biologie, Band I: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • von Bertalanffy L (1968) General system theory: foundations, development, applications. George Braziller, New York

    Google Scholar 

  • Weidemann D, Koehler GH (2004) Sukzession. In: Fränzle O, Müller F, Schröder W (eds) Handbuch der Umweltwissenschaften, Grundlagen und Anwendungen der Ökosystemforschung III, 2–1. Ecomed, Landsberg am Lech, pp 1–50

    Google Scholar 

  • Whitehead AN, Russel B (1910) Principia Mathematica I. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Allen TFH, Hoekstra TW (1990) The confusion between scale-defined levels and conventional levels of organization in ecology. J Veg Sci 1:5–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Becker, E., Breckling, B. (2011). Border Zones of Ecology and Systems Theory. In: Schwarz, A., Jax, K. (eds) Ecology Revisited. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9744-6_27

Download citation

Publish with us

Policies and ethics