Skip to main content

Role of Ascorbate Peroxidase and Glutathione Reductase in Ascorbate–Glutathione Cycle and Stress Tolerance in Plants

  • Chapter
  • First Online:

Abstract

Ascorbate–glutathione (AsA–GSH) cycle is an important component of the scavenging system for reactive oxygen compounds in plants. The member of this pathway involves the antioxidants: AsA, GSH and the antioxidatnt enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAsAR), dehydroascorbate reductase (DAsAR) and glutathione reductase (GR). APX and GR are the key enzymes of the AsA–GSH cycle. APX utilizes AsA as the electron donor reducing H2O2 to water, and prevents the accumulation of a toxic level of H2O2 in photosynthetic organisms under stress conditions. GR converts oxidized glutathione (GSSG) to GSH using NAD(P)H as an electron donor. And thus a highly ratio of GSH/GSSG and AsA/DAsA is maintained at the intracellular level by this reaction during oxidative stress. In general, APX and GR activity have been shown to increase in various plant species under different stress conditions. Transgenic plants showed that APX and GR play an important role in providing resistance to oxidative stress caused by diferent stressors such as paraquat, methyl viologen, ozone, drought, heavy metals, high light, salinity, and chilling. In this review, recent progress in research on APX, GR and stress tolerance will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integ Plant Biol 51(12):1095–1103

    CAS  Google Scholar 

  • Anderson JV, Hess JL, Chevone BI (1990) Purification, characterization and immunological properties for two isoforms of glutathione reductase from eastern white pine needles. Plant Physiol 94:1402–9

    PubMed  CAS  Google Scholar 

  • Anderson JW, Foyer CH, Walker DA (1983) Light dependent reduction of hydrogen peroxide by intact spinach chloroplasts. Biochim Biophys Acta 724:69–74

    CAS  Google Scholar 

  • Azevedo-Neto AD, Ptisco JT, Eneas-Filho J, Abreu CEB, Gomez-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Google Scholar 

  • Baek KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci 165:1221–1227

    CAS  Google Scholar 

  • Bai J, Gong CM, Chen K, Kang HM, Wang G (2009) Examination of antioxidative system’s responses in the different phases of drought stress and during recovery in desert plant Reaumuria soongorica (Pall.) maxim. J Plant Biol 52:417–425

    Google Scholar 

  • Boveris A, Sies H, Martino EE, Docampo R, Turrens JF, Stoppani AO (1980) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J 188:643–648

    PubMed  CAS  Google Scholar 

  • Bursey EH, Poulos TL (2000) Two substrate binding sites in ascorbate peroxidase:the role of arginine 172. Biochemistry 39:7374–7379

    PubMed  CAS  Google Scholar 

  • Chalapathi Rao ASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants. Springer, Berlin, Heidelberg, pp 111–147

    Google Scholar 

  • Chen GX, Asada K (1990) Hydroxyurea and p-aminophenol are the suicide inhibitors of ascorbate peroxidase. J Biol Chem 265:2775–2781

    PubMed  CAS  Google Scholar 

  • Chen YP, Xing LP, Wu GJ, Wang HZ, Wang XE, Cao AZ, Chen PD (2007) Plastidial glutathione reductase from Haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum aestivum). Plant Cell Physiol 48:1702–1712

    PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    PubMed  CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin ML, De Carvalho MHC, D’Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    PubMed  CAS  Google Scholar 

  • Creissen GP, Reynolds H, Xuem Y, Mullineaux PM (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175

    PubMed  CAS  Google Scholar 

  • Creissen GP, Edwards EA, Enard C, Wellburn A, Mullineaux PM (1991) Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J 2:129–31

    Google Scholar 

  • Creissen GP, Mullineaux PM (1995) Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197:422–5

    PubMed  CAS  Google Scholar 

  • Dabrowska G, Katai A, Goc A, Szechynska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Ser Bot 49:7–17

    Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Zhong SQ, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittlera R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  Google Scholar 

  • Desingh R, Jutur PP, Reddy AR (2006) Salinity stress-induced changes in photosynthesis and antioxidative systems in three casuarina species. J Plant Biol 33:1–2

    Google Scholar 

  • Desingh R, Kanagaraj G (2007) Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. Gen Appl Plant Physiol 33:221–234

    CAS  Google Scholar 

  • Dhindsa RS (1991) Drought stress, enzymes of glutathione metabolism, oxidative injury and protein synthesis in Tortula ruralis. Plant Physiol 95:648–5

    PubMed  CAS  Google Scholar 

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Responses of antioxidants to paraquat in pea leaves. Plant Physiol 113:249–257

    PubMed  CAS  Google Scholar 

  • Edjolo A, Laffray D, Guerrier G (2001) The ascorbate-glutathione cycle in the cytosolic and chloroplastic fractions of drought-tolerant and drought-sensitive poplars. J Plant Physiol 158:1511–1517

    CAS  Google Scholar 

  • Edwards EA, Enard C, Creissen GP, Mullineaux PM (1994) Synthesis and properties of glutathione reductase in stressed peas. Planta 192:137–143

    CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    CAS  Google Scholar 

  • Khan F, Siddiqi TO, Mahmooduzzafar AA (2009) Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt stress. J Plant Interact 4:295–306

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol 97:863–872

    PubMed  CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33:691–705

    PubMed  CAS  Google Scholar 

  • Gaullier JM, Lafontant P, Valla A, Bazin M, Giraud M, Santus R (1994) Glutathione peroxidase and glutathione reductase activities towards glutathione-derived antioxidants. Biochem Biophys Res Commun 203:1668–1647

    PubMed  CAS  Google Scholar 

  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defenses against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–9

    PubMed  CAS  Google Scholar 

  • Gossett DR, Millhollon EP, Rucas MC, Banks SW, Marney MM (1994) The effects of NaCl on antioxidant enzyme activities in callus tissue of salt-tolerant and salt-sensitive cotton cultivars (Gossypium hirsutum L.). Plant Cell Rep 13:498–503

    CAS  Google Scholar 

  • Greenway H, Munns H (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinkas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469

    PubMed  CAS  Google Scholar 

  • Gupta R, Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132:1149–1152

    PubMed  CAS  Google Scholar 

  • Guy CL, Carter JV (1984) Characterization of partially purified glutathione reductase from cold-hardened and non hardened spinach leaf tissue. Cryobiology 21:454–464

    CAS  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Mol Biol 51:463–499

    CAS  Google Scholar 

  • Hatata MM, Abdel-Aal EA (2008) Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am-Euras J Agric Environ Sci 4:655–669

    Google Scholar 

  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84

    CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM, Sevilla F (2000) Tolerance of pea (Pisum sativum L.) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23:853–862

    CAS  Google Scholar 

  • Hong CY, Hsu YT, Tsai YC, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J Exp Bot 58:3273–3283

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol 39:23–34

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Takeda T, Shigeoka S, Sakai K (1996) cDNAs encoding spinach stromal and thylakoidbound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384:289–293

    PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Tamoi T, Takeda T, Shigeoka S (1997) Alternative mRNA splicing of 3′-terminal exons generates ascorbate peroxidase isoenzymes in spinach (Spinacia oleracea) chloroplasts. Biochem J 328:795–800

    PubMed  CAS  Google Scholar 

  • Jespersen HM, Kjaersgård IV, Ostergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    PubMed  CAS  Google Scholar 

  • Jiang FY, Hellman U, Sroga GE, Bergman B, Mannervik B (1995) Cloning sequencing and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270:22882–22889

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:175–284

    Google Scholar 

  • Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F (1998) “Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    PubMed  CAS  Google Scholar 

  • Kalt-Torres W, Burke JJ, Anderson JM (1984) Chloroplast glutathione reductase: purification and properties. Physiol Plant 61:271–278

    CAS  Google Scholar 

  • Kaminaka H, Morita S, Nakajima M, Masmura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

    PubMed  CAS  Google Scholar 

  • Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Müller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643–646

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excitation energy in Arabidopsis. Science 284:654–657

    PubMed  CAS  Google Scholar 

  • Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol 195:701–729

    PubMed  CAS  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J (2005a) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    PubMed  CAS  Google Scholar 

  • Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ (2005b) Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. J Biochem Mol Biol 38:218–224

    PubMed  CAS  Google Scholar 

  • Kim DW, Shibato J, Agrawa GK, Fujihara S, Iwahashi H, Kim DH, Shim IS, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol Cells 24:45–59

    PubMed  CAS  Google Scholar 

  • Kele Y, Ünyayar S (2004) Responses of antioxidant defense system of Helianthus annuus to abscisic acid treatment under drought and waterlogging. Acta Physiol Plant 26:149–156

    Google Scholar 

  • Kozel NV, Shalygo NV (2009) Barley leaf antioxidant system under photooxidative stress induced by Rose Bengal. Russ J Plant Physl 56:316–322

    CAS  Google Scholar 

  • Kubo A, Saji H, Tanaka K, Kondo N (1995) Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol 29:479–489

    PubMed  CAS  Google Scholar 

  • Kubo A, Sano T, Saji H, Tanaka K, Kondo N, Tanaka K (1993) Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiol 34:1259–1266

    CAS  Google Scholar 

  • Kukreja S, Nandwal AS, Kumar N, Sharma SK, Sharma SK, Unvi V, Sharma PK (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49:305–308

    CAS  Google Scholar 

  • Lascano HR, Gomez LD, Casano LM, Trippi VS (1998) Changes in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiol Biochem 36:321–329

    CAS  Google Scholar 

  • Lascano HR, Gomez LD, Casano LM, Trippi VS (1999) Wheat chloroplastic glutathione reductase activity is regulated by the combined effect of pH, NADPH and GSSG. Plant Cell Physiol 40:683–90

    CAS  Google Scholar 

  • Lascano HR, Casano LM, Melchiorre MN, Trippi VS (2001) Biochemical and molecular charac-terisation of wheat chloroplastic glutathione reductase. Biol Plant 44:509–516

    CAS  Google Scholar 

  • Lee H, Jo J, Son D (1998) Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta 1395:309–314

    PubMed  CAS  Google Scholar 

  • Lee H, Won SH, Lee BH, Park HD, Chung WI, Jo J (2002) Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. Pekinensis. Mol Cells 13:245–251

    PubMed  CAS  Google Scholar 

  • Lin CC, Kao CH (2000) Effect of NaCl stress on H2O2 metabolism in rice leaves. Plant Growth Regul 30:151–155

    CAS  Google Scholar 

  • Lin DI, Lur HS, Chu C (2001) Effects of abscisic acid on ozone tolerance of rice (Oryza sativa L.) seedlings. Plant Growth Regul 35:295–300

    CAS  Google Scholar 

  • Lisenbee CS, Heinze M, Trelease RN (2003) Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type Arabidopsis cells. Plant Physiol 132:870–882

    PubMed  CAS  Google Scholar 

  • Lu P, Sang WG, Ma KP (2008) Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive eupatorium species in China. J Integr Plant Biol 50:393–401

    PubMed  CAS  Google Scholar 

  • Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol 100:138–145

    PubMed  CAS  Google Scholar 

  • Mahan JR, Burke JJ (1987) Purification and characterization of glutathione reductase from corn mesophyll chloroplasts. Physiol Plant 71:352–358

    CAS  Google Scholar 

  • Mandelman D, Jamal J, Poulos TL (1998a) Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry 37:17610–17617

    PubMed  CAS  Google Scholar 

  • Mandelman D, Li HY, Poulos TL, Schwarz FP (1998b) The role of quaternary interactions on the stability and activity of ascorbate peroxidase. Protein Sci 7:2089–2098

    PubMed  CAS  Google Scholar 

  • Mandhania s, Madan S, Sawhney V (2006) Antioxidant defense mechanism under salt stress in wheat seedlings. Biol Plant 50:227–231

    CAS  Google Scholar 

  • Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–26

    PubMed  CAS  Google Scholar 

  • Meyer A (2009) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390–403

    Google Scholar 

  • Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10:461–473

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1991) Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol 97:962–968

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1992) Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem 267:21802–21807

    PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    PubMed  CAS  Google Scholar 

  • Miyake C, Asada K (1996) Inactivation mechanism of ascorbate proxidase at low concentrations of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol 37:423–430

    CAS  Google Scholar 

  • Miyake C, Cao WH, Asada K (1993) Purification and molecular properties of the thylakoid-bound ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol 34:881–889

    CAS  Google Scholar 

  • Miyake C, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol 32:33–43

    CAS  Google Scholar 

  • Morita S, Kaminaka H, Masumura T, Tanaka K (1999) Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol 40:417–422

    CAS  Google Scholar 

  • Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Creissen GP (1997) Glutathione reductase: regulation and role in oxidative stress. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidants. Cold Spring Harbor Laboratory Press, New York, pp 667–713

    Google Scholar 

  • Mullineaux PM, Enard C, Hellens R, Creissen G (1996) Characterization of a glutathione reductase gene and its genetic locus from pea (Pisum sativum L.). Planta 200:186–194

    PubMed  CAS  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Genet Genomics 279:171–182

    PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    PubMed  CAS  Google Scholar 

  • Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    PubMed  CAS  Google Scholar 

  • Pang CH, Zhang SJ, Gong ZZ, Wang BS (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plant 125:490–499

    CAS  Google Scholar 

  • Pang CH, Wang BS (2007) Oxidative stress and salt tolerance. In: Luettge U, Beyschlag W, Murata J (eds) Progress in botany, vol 69. Springer-Verlag, Berlin Heidelberg, pp 231–245

    Google Scholar 

  • Passardi F, Bakalovic N, Teixeira FK, Margis-Pinheiro M, Penel C, Dunand C (2007) Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics 89:567–579

    PubMed  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in a drought resistant maize strain. Plant Cell Physiol 33:957–961

    CAS  Google Scholar 

  • Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34:4331–4341

    PubMed  CAS  Google Scholar 

  • Peeters N, Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541:54–63

    PubMed  CAS  Google Scholar 

  • Pinto MC, Mata AM, Lopez-Barea J (1984) Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch Biochem Biophys 228:1–12

    PubMed  CAS  Google Scholar 

  • Pinto MC, Mata AM, Lopez-Barea J (1985) The redox interconversion mechanism of Saccharomyces cerevisiae glutathione reductase. Eur J Biochem 15:275–278

    Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock protein in cytosolic ascobate peroxidase (Apx1) deficient Arabidopsis plants. Plant J 34:187–203

    PubMed  CAS  Google Scholar 

  • Raven EL (2000) Peroxidase-catalyzed oxidation of ascorbate. Structural, spectroscopic and mechanistic correlations in ascorbate peroxidase. Subcell Biochem 35:317–349

    PubMed  CAS  Google Scholar 

  • Raven EL, Çelik A, Cullis PM, Sangar R, Sutcliffe MJ (2001) Engineering the active site of ascorbate peroxidase. Biochem Soc Trans 29:105–111

    CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    PubMed  CAS  Google Scholar 

  • Rouhier N, Couturier J, Jacquot JP (2006) Genome-wide analysis of plant glutaredoxin systems. J Exp Bot 57:1685–1696

    PubMed  CAS  Google Scholar 

  • Rudhe C, Chew O, Whelan J, Glaser E (2002) A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J 30:213–220

    PubMed  CAS  Google Scholar 

  • Rudhe C, Clifton R, Chew O, Zeman K, Richter S, Lamppa G, Whelan J, Glaser E (2004) Processing of the dual targeted precursor protein of glutathione reductase in mitochondria and chloroplasts. J Mol Biol 343:639–647

    PubMed  CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of sntioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41:387–394

    CAS  Google Scholar 

  • Sairam RK, Shukla DS, Saxena DC (1997) Stress-induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40:357–364

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CAS  Google Scholar 

  • Saruhan N, Terzi R, Saglam A, Kadioglu A (2009) The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress. Biol Res 42:315–326

    PubMed  CAS  Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    PubMed  CAS  Google Scholar 

  • Selote DS, Chopra RK (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defense in rice panicles. Physiol Plant 121:462–471

    CAS  Google Scholar 

  • Selote DS, Chopra RK (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiol Plant 127:494–506

    CAS  Google Scholar 

  • Serrano A, Liobell A (1993) Occurrence of two isoforms of glutathione reductase in the green alga Chlamydomonas reinhardtii. Planta 190:199–205

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2004) Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci 67:541–550

    Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    CAS  Google Scholar 

  • Sharp KH, Mewies M, Moody PCE, Raven EL (2003) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10:303–307

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980) Purification and some properties of L-ascorbic acid-specific peroxidase in Euglena gracillis. Arch Biochem Biophys 20:1221–1227

    Google Scholar 

  • Smirnoff N, Colombe SV (1988) Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J Exp Bot 39:1097–1108

    CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456

    CAS  Google Scholar 

  • Song XS, Hu WH, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2005) Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses inCucumis sativus L. Plant Physiol Biochem 43:1082–1088

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Grimma B, Wobusa U, Weschkea W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442

    CAS  Google Scholar 

  • Srivalli B, Sharma G, Chopra RK (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–512

    CAS  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (1997) Cloning and characterization of a cytosolic glutathione reductase cDNA from pea (Pisum sativum L.) and its expression in response to stress. Plant Mol Biol 35:641–654

    PubMed  CAS  Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545

    PubMed  CAS  Google Scholar 

  • Storozhenko S, Pauw PD, Montague MV, Inze D, Kushnir S (1998) The heat-shock element is a functional component of the Arabidopsis APX1 gene promotor. Plant Physiol 118:1005–1014

    PubMed  CAS  Google Scholar 

  • Sung MS, Hsu YT, Hsu YT, Wu TM, Lee TM (2009) Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress. Mar Biotechnol 11:199–209

    PubMed  CAS  Google Scholar 

  • Takeda T, Ishikawa T, Shigeoka S, Hirayama O, Mitsunaga T (1993) Purification and characterization of glutathione reductase from Chlamydomonas reinhardtii. J Gen Microbiol 139:2233–2238

    CAS  Google Scholar 

  • Tang X, Webb MA (1994) Soybean root nodule cDNA encoding glutathione reductase. Plant Physiol 104:1081–1082

    PubMed  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Galvao VC, Margis R, Margis-Pinheiro M (2006) Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300–314

    PubMed  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

    PubMed  CAS  Google Scholar 

  • Tsaia YC, Hongb CY, Liua LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    Google Scholar 

  • Ünyayar S, Keleş Y, Çekiç FÖ (2005) The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant Soil Environ 51:57–64

    Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential responses in salt tolerant and sensitive varieties. Plant Sci 165:1411–1418

    CAS  Google Scholar 

  • von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondria1 and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Google Scholar 

  • Wada N, Kinoshita S, Matsuo M, Amako K, Miyake C, Asada K (1998) Purification and molecular properties of ascorbate peroxidase from bovine eye. Biochem Biophys Res Commun 242:256–261

    PubMed  CAS  Google Scholar 

  • Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393

    CAS  Google Scholar 

  • Wingsle G (1989) Purification and characterization of glutathione reductase from Scots pine needles. Physiol Plant 76:24–30

    CAS  Google Scholar 

  • Yamaguchi K, Nishimura M, Mori H (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and Leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    PubMed  CAS  Google Scholar 

  • Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    PubMed  CAS  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55:782–786

    CAS  Google Scholar 

  • Yoshimura K, Ishikawa T, Nakamura Y, Tamoi M, Takeda T, Tada T, Nishimura K, Shigeoka S (1998) Comparative study on recombinant chloroplastic and cytosolic ascorbate peroxidase isozymes of spinach. Arch Biochem Biophys 363:66–63

    Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–233

    PubMed  CAS  Google Scholar 

  • Zaharieva TB, Abadia J (2003) Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma 211:269–275

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the NSFC (National Natural Science Research Foundation of China, project No. 30870138) and the HI-Tech Research and Development (863) Program of China (2007AA091701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Shan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pang, CH., Wang, BS. (2010). Role of Ascorbate Peroxidase and Glutathione Reductase in Ascorbate–Glutathione Cycle and Stress Tolerance in Plants. In: Anjum, N., Chan, MT., Umar, S. (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9404-9_3

Download citation

Publish with us

Policies and ethics