Skip to main content

Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs

  • Chapter
  • First Online:
Methodologies and Results in Grapevine Research

Abstract

The aim of this chapter is to assess the interplay of hydraulic conductance and xylem embolism (cavitation) in root, in shoot, in leaf and in the whole grapevine. To measure hydraulic conductance, three main methods are available, which are based on evaporating (EFM), pulling (VPM) or pushing (HPM) water out of the plant organ. The three methods are expected to give similar results upon plant water status. Under drought, hydraulic conductance assessment must take into account the extent of embolism. EFM does not modify xylem cavitation and gives good estimates of hydraulic conductance, even if it does not give direct evidence of the embolism phenomenon. VPM involves pulling water through the organ using a vacuum pump, but it is limited by the atmospheric pressure (about 0.1 MPa); when the pulling-tension does not exceed the organ water potential, presence of embolism is not perturbed. The HPM is the easiest method to modulate a wide range of pressures, forcing flows into the sample; HPM measurements can displace native embolism. Extent of embolisms is represented as Percent Loss of Conductivity (PLC) of organ-segments. By imposing an appropriate pressure to HPM systems, it is possible to assess organ-segment PLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

E:

Steady state transpirational flow rate

EFM:

Evaprative flux method

Eplant :

Plant transpiration

Gplant :

plant hydraulic conductance

HD:

Heat dissipation

HPV:

Heat pulse velocity

Kleaf :

Leaf hydraulic conductance

Kroot :

Root hydraulic conductance

PAR:

Photosynthetic active radiation

RKM:

Rehydration kinetics method

RWU:

Relative water uptake

SHB:

Stem Heat Balance

THB:

Trunk Heat Balance

References

  • Améglio T, Archer P, Cohen M, Valancogne C, Daudet FA, Dayau S, Cruiziat P (1999) Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant Soil 207:155–167

    Article  Google Scholar 

  • Baker JM, van Bavel CHM (1987) Measurement of mass flow of water in the stems of herbaceous plants. Plant Cell Environ 10:777–782

    Google Scholar 

  • Baiges I, Schaffner AR, Mas A (2001) Eight cDNA encoding putative aquaporins in Vitis hybrid Richter-110 and their differential expression. J Exp Bot 52:1949–1951

    Article  PubMed  CAS  Google Scholar 

  • Bavaresco L, Lovisolo C (2000) Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39:89–92

    Google Scholar 

  • Bogeat-Triboulot MB, Martin R, Chatelet D, Cochard H (2002) Hydraulic conductance of root and shoot measured with the transient and dynamic modes of the high-pressure flowmeter. Ann Sci Forest 59:389–396

    Article  Google Scholar 

  • Braun P, Schmid J (1999) Sap flow measurements in grapevines (Vitis vinifera L.) 2. Granier measurements. Plant Soil 215:47–55

    Article  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    Article  PubMed  CAS  Google Scholar 

  • Čermák J, Kučera J, Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18:529–546

    Article  Google Scholar 

  • Cochard H, Bodet C, Améglio T, Cruiziat P (2000) Cryoscanning electron microscopy observations of vessel content during transpiration in walnut petioles: facts or artifacts? Plant Physiol 124:1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Coll L, Le Roux X, Améglio T (2002) Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol 128:282–290

    Article  PubMed  CAS  Google Scholar 

  • Cochard H, Venisse JS, Barigah TS, Brunel N, Herbette S, Guilliot A, Tyree Mt, Sakr S (2007) Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiol 143:122–133

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Iwasaki I, Kitagawa Y (2004) Overexpression of a lily PIP1 gene in tobacco increased the osmotic water permeability of leaf cells. Plant Cell Environ 27:177–186

    Article  CAS  Google Scholar 

  • Fouquet R, Leon C, Ollat N, Barrieu F (2008) Identification of grapevine aquaporins and expression analysis in developing berries. Plant Cell Rep 27:1541–1550

    Article  PubMed  CAS  Google Scholar 

  • Galmés J, Pou A, Alsina MM, Tomàs M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  Google Scholar 

  • Gascó A, Nardini A, Raimondo F, Gortan E, Motisi A, Lo Gullo MA, Salleo S (2007) Hydraulic kinetics of the graft union in different Olea europaea L. scion/rootstock combinations. Environ Exp Bot 60:245–250

    Article  Google Scholar 

  • Gascó A, Nardini A, Salleo S (2004) Resistance to water flow through leaves of Coffea arabica is dominated by extra-vascular tissues. Funct Plant Biol 31:1161–1168

    Article  Google Scholar 

  • Glissant D, Dedaldechamp F, Delrot S (2008) Transcriptomic analysis of grape berry softening during ripening. J Int Sc Vigne Vin 42:1–13

    CAS  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27–31

    Article  PubMed  CAS  Google Scholar 

  • Jaillón O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Google Scholar 

  • Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and Plant Water Balance. Plant Cell Environ 31:658–666

    Article  PubMed  CAS  Google Scholar 

  • Kolb KJ, Sperry JS, Lamont BB (1996) A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. J Exp Bot 47:1805–1810

    Article  CAS  Google Scholar 

  • Köstner B, Granier A, Cermák J (1998) Sapflow measurements in forest stands: methods and uncertainties. Ann Sci For 55:13–27

    Article  Google Scholar 

  • Liu WT, Wenkert W, Allen LH, Lemon ER (1978) Soil-plant water relations in a New York vineyard: resistances to water movement. J Am Soc Hortic Sci 103:226–230

    Google Scholar 

  • Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356

    Article  CAS  Google Scholar 

  • Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010) Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non hydraulic interactions at the wholeplant level: a physiological and molecular update. Funct Plant Biol 37: in press. doi: 10.1071/FP09191

    Google Scholar 

  • Lovisolo C, Perrone I, Hartung W, Schubert A (2008a) An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought. New Phytol 180:642–651

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700

    CAS  Google Scholar 

  • Lovisolo C, Schubert A (2000) Downward shoot positioning affects water transport in field-grown grapevines. Vitis 39:49–53

    Google Scholar 

  • Lovisolo C, Schubert A (2006) Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach. New Phytologist 172:469–478

    Article  PubMed  CAS  Google Scholar 

  • Lovisolo C, Secchi F, Nardini A, Salleo S, Buffa R, Schubert A (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–551

    Article  CAS  Google Scholar 

  • Lovisolo C, Tramontini S, Flexas J, Schubert A (2008b) Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environ Exp Bot 63:178–182

    Article  CAS  Google Scholar 

  • Lundblad M, Lagergren F, Lindroth A (2001) Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Ann For Sci 58:625–638

    Article  Google Scholar 

  • Muramatsu N, Hiraoka K (2008) Hydraulic conductance and xylem anatomy in fruit tree shoots. J Japan Soc Hort Sci 77:122–127

    Article  Google Scholar 

  • Nardini A (2001) Are sclerophylls and malacophylls hydraulically different? Biol Plant 44:239–245

    Article  Google Scholar 

  • Nardini A, Gascò A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency? Tree Physiol 26:1137–1144

    Article  PubMed  Google Scholar 

  • Nardini A, Gascò A, Trifilò P, Lo Gullo MA, Salleo S (2007) Ion-mediated enhancement of xylem hydraulic conductivity is not always suppressed by the presence of Ca2+ in the sap. J Exp Bot 58:2609–2615

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Salleo S, Andri S (2005) Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant Cell Environ 28:750–759

    Article  CAS  Google Scholar 

  • Perrone I, Carra A, Lovisolo C, Schubert (2006) Vitis vinifera aquaporin PIP2 (pip2) mRNA, complete cds. NCBI GenBank: DQ358107.1

    Google Scholar 

  • Picaud S, Becq F, Dedaldechamp F, Ageorges A, Delrot S (2003) Cloning and expression of two plasma membrane aquaporins expressed during the ripening of grape berry. Funct Plant Biol 30:621–630

    Article  CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development, BMC Plant Biol 6:27. doi: 10.1186/1471-2229-6-27

    Article  PubMed  Google Scholar 

  • Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM (2002) The hydraulic conductance of the angiosperm leaf lamina: a comparison of three measurement methods. J Exp Bot 53:2177–2184

    Article  PubMed  CAS  Google Scholar 

  • Sakuratani T (1981) A heat balance method for measuring water flux in the stem of intact plants. J Agric Met 37:9–17

    Article  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilò P, Nardini A (2004) New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ 27:1065–1076

    Article  Google Scholar 

  • Sauter A, Davies WJ, Hartung W (2001) The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. J Exp Bot 52:1991–1997

    Article  PubMed  CAS  Google Scholar 

  • Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232:255–265

    Article  PubMed  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Schubert A, Restagno M, Novello V, Peterlunger E (1995) Effects of shoot orientation on growth, net photosynthesis, and hydraulic conductivity of Vitis vinifera L. cv Cortese. Am J Enol Vitic 46:324–328

    CAS  Google Scholar 

  • Schultz HR, Matthews MA (1988) Resistance to water transport in shoots of Vitis vinifera L. Plant Physiol 88:718–724

    Article  PubMed  CAS  Google Scholar 

  • Scoffoni C, Pou A, Aasamaa K, Sack L (2008) The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ 31:1803–1812

    Article  PubMed  Google Scholar 

  • Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1065–1078

    Article  CAS  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  PubMed  CAS  Google Scholar 

  • Swanson RH (1994) Significant historical developments in thermal methods for measuring sap flow in trees. Agric For Meteorol 72:113–132

    Article  Google Scholar 

  • Tsuda M, Tyree MT (2000) Plant hydraulic conductance measured by the high pressure flow meter in crop plants. J Exp Bot 51 (345):823–828

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Nardini A, Salleo S, Sack L, El Omari B (2005) The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response? J Exp Bot 56:737–744

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Ann Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Tyree MT, Yang S, Cruiziat P, Sinclair B (1994) Novel methods of measuring hydraulic conductivity of tree root systems and interpretation using AMAIZED, a maize root dynamic model for water and solute transport. Plant Physiol 104:189–199

    PubMed  CAS  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  PubMed  CAS  Google Scholar 

  • van Ieperen W (2007) Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends in Plant Sci 12:137–142

    Article  Google Scholar 

  • van Ieperen W, van Gelder A (2006) Ion-mediated flow changes suppressed by minimal calcium presence in xylem sap in Chrysanthemum and Prunus laurocerasus. J Exp Bot 57:2743–2750

    Article  PubMed  Google Scholar 

  • Voicu MC, Zwiazek JJ, Tyree MT (2008) Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves. Tree Phsysol 28:1007–1015

    Article  CAS  Google Scholar 

  • Yang S, Tyree MT (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15:633–643

    Article  Google Scholar 

  • Zharkikh A, Troggio M, Pruss D, Cestaro A, Eldrdge G, Pindo M, Mitchell JT, Vezzulli S, Bhatnagar S, Fontana P, Viola R, Gutin A, Salamini F, Skolnick M, Velasco R (2008) Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: Problems and solutions. J Biotech 136:38–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Lovisolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lovisolo, C., Tramontini, S. (2010). Methods for Assessment of Hydraulic Conductance and Embolism Extent in Grapevine Organs. In: Delrot, S., Medrano, H., Or, E., Bavaresco, L., Grando, S. (eds) Methodologies and Results in Grapevine Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9283-0_6

Download citation

Publish with us

Policies and ethics