Skip to main content

Abstract

Side effects of herbicides and increasing prevalence of organic farming induce the need of further developments in mechanical weed control. Mechanical weed control is mainly associated with cultivating tillage (e.g. tertiary tillage), but also primary and secondary tillage influence weeds. Cultivating tillage is performed in growing crops with harrows , hoes , brushes and a number of special tools for intra-row weed control. Inter-row cultivations have been used in many decades in row crops and perform in general well. To increase their capacity and accuracy, guidance systems are important to steer the hoes along the rows. The success of inter- and intra-row cultivation is highly influenced by selectivity factors. The control mechanisms of all cultivating tillage methods are burring in soil, uprooting, and tearing plants into pieces. Especially for whole crop and intra-row cultivators, successful weed control is highly influenced by appropriate adjustment of the intensity (aggressiveness) of cultivation according to the variations of soil resistance, crop and weed resistance to cultivation and the competitive interactions between crop and weeds. Site-specific weed management aims to identify the spatial and temporal variability of weeds and manage them correspondingly. New technologies for sensing crops and weeds in real-time and robotics allow a precise operation of mechanical tools, to improve efficacy of control and reduce operation costs. Hence in this chapter, implements for mechanical weeding are described together with their options for site-specific weed control strategies. Harrows and rotary hoes are used for whole crop treatment, but it is essential to find the right timing and intensity to obtain the best selectivity and yield response. Different implements attached to the same vehicle are combined together attempting more selective weed control, like the in-row cultivator, the rotary harrow , and the precision hoe . Lately, there are prototypes intending automatic adjustment of the aggressiveness for the spring-tine harrow and autonomous guidance for hoes, thus getting closer to a real-time site-specific weed management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baerveldt S, Ascard J (1999) Effect of soil cover on weeds. Biol Agric Horticul 17: 101–111

    Article  Google Scholar 

  • Benzing A (2001) Agricultura Orgánica: Fundamentos para la Región Andina. Neckar-Verlag, Villingen-Schwenningen

    Google Scholar 

  • Blackshaw RE, Anderson RL, Lemerle D (2007) Cultural weed management. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Oxford, pp 35–47

    Chapter  Google Scholar 

  • Bond W, Turner R, Davies G (2007) A review of mechanical weed control. HDRA, Ryton Organic Gardens, Coventry, CV8 3LG, UK.http://www.gardenorganic.org.uk/organicweeds, pp 1–24. Accessed 08 May 2009.

  • Bowman G (1997) Steel in the field: a farmers guide to weed management tools. Sustainable Agricultural Publications, University of Vermont, Burlington

    Google Scholar 

  • Carlesi F, Bigongiali D, Antichi D et al (2009) Effect of innovative crop and weed management systems on organic cauliflower in Central Italy. In: Cloutier D (ed) Proceedings of the 8th EWRS Workshop on Physical and Cultural Weed Control, Zaragoza

    Google Scholar 

  • Cirujeda A, Melander B, Rasmussen K et al (2003) Relationship between speed, soil movement into the cereal row and intra-row weed control efficacy by weed harrowing. Weed Res 48:285–296

    Google Scholar 

  • Cloutier DC, Van der Weide RY, Peruzzi A, Leblanc M (2007) Mechanical weed management. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Oxfordshire, pp 111–134

    Chapter  Google Scholar 

  • Dierauer H U, Stöppler-Zimmer H (1994) Unkrautregulierung ohne Chemie. Ulmer, Stuttgart

    Google Scholar 

  • Engelke B (2001) Entwicklung eines Steuersystems in der ganzflächig mechanischen Unkrautbekämpfung. Institut für Landwirtschaftliche Verfahrenstechnik. Agrar- und Ernä-hrungswissenschaftlichen Fakultät der Christian-Albrechts-Universität Kiel

    Google Scholar 

  • Fontanelli M, Raffaelli M, Ginanni et al (2009) Non-chemical weed control on open-field fresh market tomato in the Serchio Valley (Central Italy). In Cloutier D (ed) Proceedings 8th EWRS workshop on physical and cultural weed control, Zaragoza, pp 49–55

    Google Scholar 

  • Graglia E, Melander B, Jensen RK (2006) Mechanical and cultural strategies to control Cirsium arvense in organic arable cropping systems. Weed Res 46:304–312

    Article  Google Scholar 

  • Gerhards R, Sökefeld M, Nabout A et al (2002) Online weed control using digital image analysis. J Plant Dis Prot IXX (special issue): 421–427

    Google Scholar 

  • Gobor Z (2007) Development of a novel mechatronic system for mechanical weed control of the intra-row area in row crops based on detection of single palnts and adequate controlling of the hoeing tool in real-time. PhD thesis University of Bonn, Bonn

    Google Scholar 

  • Griepentrog HW, Noerremark M, Nielsen J (2006) Autonomous intra-row rotor weeding based on GPS. In: CIGR World Congress Agricultural Engineering for a Better World. Bonn, 3–7th September, pp 1–7

    Google Scholar 

  • Griepentrog H W, Gulhom-Hansen T, Nielsen J (2007) First field results from intra-row rotor weeding. Proceedings of 7th european weed research society workshop on physical and cultural weed control. Salem, Germany

    Google Scholar 

  • Gruber S, Claupein W (2009) Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res 105:104–111

    Article  Google Scholar 

  • Gupta ML, George DL, Norton L (2008) Precision guided mechanical weed control. Proceedings of the 16th Australian Weeds Conference, Brisbane

    Google Scholar 

  • Hacker E (1984). Untersuchungen zum Einfluß des Lichtes auf den Lebenszyklus der Gemeinen Quecke (Agropyron repens (L.) P.B.) vor populationsdynamischem Hintergrund. PhD thesis, University of Stuttgart-Hohenheim, Stuttgart-Hohenheim

    Google Scholar 

  • Hatcher PE, Melander B (2003) Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res 43:303–322

    Article  Google Scholar 

  • Jensen RK, Rasmussen J, Melander B (2004) Selectivity of weed harrowing in lupin. Weed Res 44:245–253

    Article  Google Scholar 

  • Kielhorn A, Dzinaj T, Gelze F et al (2000) Beikrautregulierung in Reihenkulturen – Sensorgesteuerte Querhacke im Mais Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. Sonderheft XVII:207–215

    Google Scholar 

  • Kurstjens DAG, Kropff MJ (2001) The impact of uprooting and soil-covering on the effectiveness of weed harrowing. Weed Res 41:211–228

    Article  Google Scholar 

  • Kurstjens DAG, Perdok UD (2000) The selective soil covering mechanism of weed harrows on sandy soil. Soil Tillage Res 55:193–206

    Article  Google Scholar 

  • Melander B (2006) Current achievements and future directions of physical weed control in Europe. AFPP 3rd International conference on non-chemical crop protection methods, Lille, 13–15 March. Orgprints. http://orgprints.org/9998. Accessed on 04 January 2009. 49–58

  • Melander B (1997) Optimization of the adjustment of a vertical axis rotary brush weeder for intra-row weed control in row crops. J Agric Eng Res 68:39–50

    Article  Google Scholar 

  • Melander B, Rasmussen IA, Bàrberi P (2005) Integrating physical and cultural methods of weed control – examples of European research. Weed Sci 53:369–381

    Article  CAS  Google Scholar 

  • Pallutt B (2002) Maßnahmen zur Unkraut Bekämpfung. In Zwerger P, Ammon HU (ed) Unkraut – Ökologie und Bekämpfung. Eugen Ulmer, Regensburg , pp 105–135

    Google Scholar 

  • Peigné J, Ball BC, Roger-Estrade J, David C (2007) Is conservation tillage suitable for organic farming? Soil Use Manag 23:129–144

    Article  Google Scholar 

  • Pekrun C, Claupein W (2004) The effect of stubble tillage and primary tillage on population dynamics of Canada thistle (Cirsium arvense) in organic farming. J Plant Dis Prot XIX (special issue):483–490

    Google Scholar 

  • Peruzzi A, Ginanni M, Fontanelli M et al (2007) Innovative strategies for on-farm weed management in organic carrot. Renew Agric Food Sys 22:246–259

    Google Scholar 

  • Place GT, Reberg-Horton SC, Burton MG (2009) Effects of preplant and postplant rotary hoe use on weed control, soybean pod position, and soybean yield. Weed Sci 57:290–295

    Article  CAS  Google Scholar 

  • Raffaelli M, Fontanelli M, Frasconi C et al (2009) Physical weed control in protected leaf-beet in Central Italy. In Cloutier D (ed) Proceedings of the 8th EWRS Workshop on Physical and Cultural Weed Control. Zaragoza, pp 69–75

    Google Scholar 

  • Rasmussen J (1990) Selectivity – an important parameter on establishing the optimum harrowing technique for weed control in growing cereals. In: Proceedings 1990 EWRS Symposium, integrated weed management in cereals, Helsinki, pp 197–204

    Google Scholar 

  • Rasmussen J (1991) A model for prediction of yield response in weed harrowing. Weed Res 31:401–408

    Article  Google Scholar 

  • Rasmussen J (1992) Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res 32:267–274

    Article  Google Scholar 

  • Rasmussen J, Bibby BM, Schou AP (2008) Investigating the selectivity of weed harrowing with new methods. Weed Res 48:523–532

    Article  Google Scholar 

  • Rasmussen J, Nielsen HH, Gundersen H (2009) Tolerance and selectivity of cereal species and cultivars to post-emergence weed harrowing. Weed Sci 57:338–345

    Article  CAS  Google Scholar 

  • Rasmussen J, Nørremark M, Bibby BM (2007) Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res 47:299–310

    Article  Google Scholar 

  • Rasmussen J, Svenningsen T (1995). Selective weed harrowing in cereals. Biol Agric Hort 12:29–46

    Article  Google Scholar 

  • Rueda-Ayala V, Gerhards R (2009) Selectivity of weed harrowing with sensor technology in cereals in Germany. In: van Henten EJ, Goense D, Lokhorst C (eds) Papers presented at the 7th European Conference on Precision Agriculture’09. Wageningen Academic Publishers, Wageningen, pp 339–348

    Google Scholar 

  • Schweizer EE, Westra P, Lybecker DW (1992) Controlling weeds in corn (Zea mays) rows with an in-row cultivator versus decisions made by a computer model. Weed Sci 42:593–600

    Google Scholar 

  • Sogaard HT (1998) Automatic control of a finger weeder with respect to the harrowing intensity at varying soil structures. J Agric Eng Res 70:157–163

    Article  Google Scholar 

  • Steinmann HH (2002) Impact of harrowing on the nitrogen dynamics of plants and soil. Soil Tillage Res 65:53–59

    Article  Google Scholar 

  • Upadhyaya MK, Blackshaw RE (2007). Non-chemical weed management: Synopsis, integration and the future. In: Upadhyaya MK, Blackshaw RE (eds) Non-chemical weed management: principles, concepts and technology. CABI, Oxford, pp 201–209

    Chapter  Google Scholar 

  • Van der Weide RY, Bleeker PO, Machten VTJ et al (2008) Innovation in mechanical weed control in row crops. Weed Res 48:215–224

    Article  Google Scholar 

  • Vanhala P, Kurstjens DAG, Ascard J et al (2004) Guidelines for physical weed control research: flame weeding, weed harrowing and intra-row cultivation. In: Proceedigns of the 6th EWRS workshop on physical and cultural weed control. Lillehammer. http://orgprints.org/00002445. Accessed 02 January 2008, pp 194–225

  • Weis M, Gutjahr C, Rueda-Ayala V et al (2008) Precision farming for weed management: techniques. Ges Pflanzen 60:171–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Rueda-Ayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rueda-Ayala, V., Rasmussen, J., Gerhards, R. (2010). Mechanical Weed Control . In: Oerke, EC., Gerhards, R., Menz, G., Sikora, R. (eds) Precision Crop Protection - the Challenge and Use of Heterogeneity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9277-9_17

Download citation

Publish with us

Policies and ethics