Skip to main content

Automated Fitting of an Elastokinematic Surrogate Mechanism for Forearm Motion from MRI Measurements

  • Conference paper
  • First Online:

Abstract

Forearm rotation (pro-supination) involves a non-trivial combination of rotation and translation of two bones, namely, radius and ulna, relatively to each other. Early works regarded this relative motion as a rotation about a fixed (skew) axis. However, this assumption turns out not to be exact. This paper regards a spatial-loop surrogate mechanism involving two degrees of freedom with an elastic coupling for better forearm motion prediction. The model parameters are not measured directly from the anatomical components, but are fitted by reducing the errors between predicted and measured values in an optimization loop. For non-invasive measurement of bone position, magnetic resonance imaging (MRI) imaging is employed. We present a method to self-calibrate the arm position in the MRI scanning tube and fitting the model parameters from a few, coarse MRI scans. Results show a good concordance between measurement and simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Jonasch and E. Bertel. Verletzungen bei Kindern bis zum 14. Lebensjahr. Hefte zur Unfallheilkunde. Springer, Berlin/Heidelberg/New York (1981).

    Google Scholar 

  2. R. Fick. Handbuch der Anatomie und der Mechanik unter Berucksichtigung der bewegenden Muskeln. Fischer Verlag, Jena (1904).

    Google Scholar 

  3. I.A. Kapandji. Funktionelle Anatomie der Gelenke, Volume 1. Enke, Stuttgart (1999).

    Google Scholar 

  4. T. Nakamura, Y. Yabe, and Y. Horiuchi. A biomechanical analysis of pronation-supination of the forearm using magnetic resonance imaging: Changes of the interosseous membrane of the forearm during pronation-supination. Nippon-Seikeigeka-Gakkai-Zasshi, 68, 14–25 (1994).

    Google Scholar 

  5. T.T. Nakamura, Y. Yabe, Y. Horiuchi, and N. Yamazaki. In vivo motion analysis of forearm rotation utilizing magnetic resonance imaging. Clin. Biomech., 14, 315–320 (1999).

    Article  Google Scholar 

  6. M.L. Robbin, K.N. An, R.L. Linscheid, and E.L. Ritman. Anatomic and kinematic analysis of the human forearm using high-speed computed tomography. Med. Biol. Eng. Comput., 24(2), 164–168 (1986).

    Article  Google Scholar 

  7. P. Kasten, M. Krefft, J. Hesselbach, and A.-M. Weinberg. Computer simulation of forearm rotation in angular deformities: a new therapeutic approach. Injury, Int. J. Care Injured, 33, 807–813 (2002).

    Google Scholar 

  8. P. Kasten, M. Krefft, J. Hesselbach, and A.-M. Weinberg. Kinematics of the ulna during pronation and supination in a cadaver study: implications for elbow arthroplasty. Clin. Biomech., 19, 31–35 (2004).

    Article  Google Scholar 

  9. A. Kecskeméthy and A. Weinberg. An improved elasto-kinematic model of the human forearm for biofidelic medical diagnosis. Multibody System Dynamics, 14, 1–21 (2005).

    Article  MATH  Google Scholar 

  10. K. Nojiri, N. Matsunaga, and S. Kawaji. Modeling of pro-supination for forearm skeleton based on MRI. In: Proceedings of the 17th Word Conference, the International Federation of Automatic Control, Seoul (Korea), July 6–11, pp. 14767–14772 (2008).

    Google Scholar 

  11. S. Miyaguchi, K. Nojiri, N. Matsunaga, and S. Kawaji. Impedance control of pro-supination based on the skeleton model of upper limbs. In: Proceedings International Conference on Control, Automation and Systems, October 17–20, pp. 968–973 (2007).

    Google Scholar 

  12. A.-M. Weinberg, I.T. Pietsch, M. Krefft, H.C. Pape, M. van Griensven, M.B. Helm, H. Reilmann, and H. Tscherne. Die Pro- und Supination des Unterarms. Unfallchirurg, 104, 404–409 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Xu, J., Kasten, P., Weinberg, A., Kecskeméthy, A. (2010). Automated Fitting of an Elastokinematic Surrogate Mechanism for Forearm Motion from MRI Measurements. In: Lenarcic, J., Stanisic, M. (eds) Advances in Robot Kinematics: Motion in Man and Machine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9262-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9262-5_37

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9261-8

  • Online ISBN: 978-90-481-9262-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics