Skip to main content

Bacterial Degradation of Polychlorinated Biphenyls

  • Chapter
  • First Online:
Geomicrobiology: Molecular and Environmental Perspective

Abstract

Microbe bioremediation is the application of biological treatment to the cleanup of hazardous contaminants in soil and surface or subsurface waters. Normally microbe bioremediation treats organic contaminants. Most microbe bioremediation processes take advantage of indigenous microorganisms, although some rely on the introduction of bacterial or fungal strains. Bacterial digestion is the process of bacteria-consuming organic matter. The bacteria feed on the contamination, deriving nutrition for growth and reproduction. Undergoing complex chemical reactions, the waste is metabolized into the final metabolic waste products, water and carbon dioxide. This provides the bacteria with the energy they need to live.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham WR, Nogales B, Golishin PN et al (2002) PCB-degrading communities in soils and sediments. Curr Opin Biotechnol 5:246–253

    CAS  Google Scholar 

  • Abramowicz DA (1995) Aerobic and anaerobic PCB biodegradation in the environment. Environ Health Perspect 103(Suppl 5):97–99

    PubMed  CAS  Google Scholar 

  • Abramowicz DA, Brennan MJ, Van Dort HM et al (1993) Factors influencing the rate of PCB dechlorination in Hudson River sediments. Environ Sci Technol 27:1125–1131

    CAS  Google Scholar 

  • Adrian L, Szewzyk U, Wecke J et al (2000) Bacterial dehalorespiration with 581 chlorinated benzenes. Nature 408:580–583

    PubMed  CAS  Google Scholar 

  • Adrian L, Dudkova V, Demnerova K et al (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial PCB mixture Aroclor 1260. Appl Environ Microbiol 75:4516–4524

    PubMed  CAS  Google Scholar 

  • Ahmad D, Masse R, Sylvestre M (1990) Cloning and expression of genes involved in 4-­chlorobiphenyl transformation by Pseudomonas testosteroni – homology to polychlorobiphenyl-degrading genes in other bacteria. Gene 86:53–61

    PubMed  CAS  Google Scholar 

  • Ahmed M, Focht DD (1973a) Degradation of PCB by two species of Achromobacter. Can J Microbiol 19:47–52

    PubMed  CAS  Google Scholar 

  • Ahmed M, Focht DD (1973b) Oxidation of PCB by Achromobacter pCB. Bull Environ Contam Toxicol 10:70–72

    PubMed  CAS  Google Scholar 

  • Alder AC, Haggblom MM, Oppenheimer S et al (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ Sci Technol 27:530–538

    CAS  Google Scholar 

  • Anid PJ, Alvarez PJJ, Vogel TM (1993) Biodegradation of monoaromatic hydrocarbons in aquifer columns amended with hydrogen peroxide and nitrate. Water Res 27:685–691

    CAS  Google Scholar 

  • Aoki Y (2001) Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters–what we have learned from Yusho disease. Environ Res 86:2–11

    PubMed  CAS  Google Scholar 

  • Arai H, Kosono S, Taguchi K et al (1998) Two sets of biphenyl and PCB degradation genes on a linear plasmid in Rhodococcus erythropolis TA421. J Ferment Bioeng 86:595–599

    CAS  Google Scholar 

  • Arensdorf JJ, Focht DD (1994) Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl Environ Microbiol 60:2884–2889

    PubMed  CAS  Google Scholar 

  • Barriault D, Sylvestre M (1993) Factors affecting PCB degradation by an implanted bacterial strain in soil microcosms. Can J Microbiol 39:594–602

    PubMed  CAS  Google Scholar 

  • Barriault D, Vedadi M, Powlowski J et al (1999) Cis-2, 3-dihydro-2, 3-dihydroxybiphenyl ­dehydrogenase and cis-1, 2-dihydro-1, 2-dihydroxynaphathalene dehydrogenase catalyze dehydrogenation of the same range of substrates. Biochem Biophys Res Comm 260:181–187

    PubMed  CAS  Google Scholar 

  • Barton MR, Crawford RL (1988) Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp. Appl Environ Microbiol 54:594–595

    PubMed  CAS  Google Scholar 

  • Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu Rev Microbiol 62:253–70

    PubMed  CAS  Google Scholar 

  • Bedard DL, Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microbiol Ecol 20:87–102

    CAS  Google Scholar 

  • Bedard DL, Quensen JF (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In: Young LY, Cerniglia C (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss Division/Wiley, New York, pp 127–216

    Google Scholar 

  • Bedard DL, Unterman R, Bopp LH et al (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51:761–768

    PubMed  CAS  Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ et al (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated-biphenyls by Alcaligenes eutrophus H850. Appl Environ Microbiol 53:1094–1102

    PubMed  CAS  Google Scholar 

  • Bedard DL, Van Dort H, Deweerd KA (1998) Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl Environ Microbiol 64:1786–1795

    PubMed  CAS  Google Scholar 

  • Bedard DL, Pohl EA, Bailey JJ et al (2005) Characterization of the PCB substrate range of microbial dechlorination process LP. Environ Sci Technol 39:6831–6838

    PubMed  CAS  Google Scholar 

  • Bedard DL, Bailey JJ, Reiss BL, Jerzak GV (2006) Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Appl Environ Microbiol 72:2460–2470

    PubMed  CAS  Google Scholar 

  • Blumenroth P, Wagner-Dobler I (1998) Survival of inoculants in polluted sediments: effect of strain origin and carbon composition. Microbiol Ecol 35:279–288

    CAS  Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol Biotechnol 1:23–29

    CAS  Google Scholar 

  • Borja JQ, Auresenia JL, Gallardo SM (2006) Biodegradation of polychlorinated biphenyls using biofilm grown with biphenyl as carbon source in fluidized bed reactor. Chemosphere 6:555–559

    Google Scholar 

  • Brazil GM, Kenefick L, Callanan M et al (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated-biphenyls and detection of bph gene-expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    PubMed  CAS  Google Scholar 

  • Brown JF, Wagner RE, Bedard DL et al (1984) PCB transformations in upper Hudson sediments. Northeast Environ Sci 3:167–179

    CAS  Google Scholar 

  • Brown JF, Bedard DL, Brennan MJ et al (1987a) PCB dechlorination in aquatic sediments. Science 236:709–712

    PubMed  CAS  Google Scholar 

  • Brown JF, Wagner RE, Feng H et al (1987b) Environmental dechlorination of PCBs. Environ Toxicol Chem 6:579–593

    CAS  Google Scholar 

  • Brühlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63:544–551

    PubMed  Google Scholar 

  • Brunner W, Sutherland FH, Focht DD (1985) Enhanced biodegradation of polychlorinated-biphenyls in soil by analog enrichment and bacterial inoculation. J Environ Qual 14:324–328

    CAS  Google Scholar 

  • Bunge M, Adrian L, Kraus A et al (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360

    PubMed  CAS  Google Scholar 

  • Butler CS, Mason J (1997) Structure-function analysisof the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    PubMed  CAS  Google Scholar 

  • Cámara B, Herrera C, González M et al (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850

    PubMed  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2003) Growth of Dehalococcoides -like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl Environ Microbiol 69:953–959

    PubMed  CAS  Google Scholar 

  • Cutter LA, Watts JEM, Sowers KR et al (2001) Identification of a microorganism that links its growth to the reductive dechlorination of 2,3,5,6-chlorobiphenyl. Environ Microbiol 3:699–709

    PubMed  CAS  Google Scholar 

  • De J, Ramaiah N, Sarkar A (2006) Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World J Microbiol Biotechnol 22:1321–1327

    CAS  Google Scholar 

  • Dercova K, Cicmanova J, Lovecka P et al (2008) Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeterior Biodegr 62:219–225

    CAS  Google Scholar 

  • Deweerd KA, Bedard DL (1999) Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ Sci Technol 33:2057–2063

    CAS  Google Scholar 

  • Donelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photo-synthetic plants. Chemosphere 28:984–988

    Google Scholar 

  • Drinker C, Warren M, Bennet G (1937) The problem of possible systemic effects from certain chlorinated hydrocarbons. J Ind Hyg Toxicol 19:283–311

    CAS  Google Scholar 

  • Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545

    PubMed  CAS  Google Scholar 

  • Erickson BD, Mondello FJ (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59:3858–3862

    PubMed  CAS  Google Scholar 

  • Faroon O, Jones D, de Rosa C (2001) Effects of polychlorinated biphenyls on the nervous system. Toxicol Ind Health 16:305–333

    Google Scholar 

  • Fava F, Di Gioia D, Marchetti L (1996) Dichlorobiphenyl degradation by an uncharacterized Pseudomonas species, strain CPE1, in a fixed film bioreactor. Int Biodeterior Biodegr 37:53–59

    CAS  Google Scholar 

  • Fava F, Di Gioia D, Marchetti L (1998) Cyclodextrins effects on the ex-situ bioremediation of a chronically polychlorobiphenyl-contaminated soil. Biotechnol Bioeng 58:345–355

    PubMed  CAS  Google Scholar 

  • Fennell DE, Nijenhuis I, Wilson SF et al (2004) Dehalococcoides ethenogenes strain 195 ­reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38:2075–2081

    PubMed  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    PubMed  CAS  Google Scholar 

  • Focht DD (1995) Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls. Curr Opi Biotechnol 6:341–346

    CAS  Google Scholar 

  • Furukawa K (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5:289–300

    PubMed  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    PubMed  CAS  Google Scholar 

  • Furukawa K, Miyazaki T (1986) Cloning of a gene-cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol 166:392–398

    PubMed  CAS  Google Scholar 

  • Furukawa K, Matsumura F, Tonomura K (1978) Alcaligenes and Acinetobacter strains capable of degrading polychlorinated biphenyls. Agric Biol Chem 42:543–548

    CAS  Google Scholar 

  • Furukawa K, Tomizuka N, Kamibayashi A (1979) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl Environ Microbiol 38:301–310

    PubMed  CAS  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M et al (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp strain RHA1. J Mol Biol 342:1041–1052

    PubMed  CAS  Google Scholar 

  • Gantzer CJ, Wackett LP (1991) Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722

    CAS  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    PubMed  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 63:1933–1938

    PubMed  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1998) Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl Microbiol Biotechnol 50:489–494

    PubMed  CAS  Google Scholar 

  • Haddock JD, Horton JR, Gibson DT (1995) Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400. J Bacteriol 177:20–26

    PubMed  CAS  Google Scholar 

  • Häggblom MM, Ahn YB, Fennell DE et al (2003) Anaerobic dehalogenation of organohalide contaminants in the marine environment. Adv Appl Microbiol 53:61–84

    PubMed  Google Scholar 

  • Harkness MR, McDermott JB, Abramowicz DA (1993) In situ stimulation of aerobic PCB ­biodegradation in Hudson river sediments. Science 259:503–507

    PubMed  CAS  Google Scholar 

  • He J, Ritalahti KM, Yang KL et al (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424:62–65

    PubMed  CAS  Google Scholar 

  • Hernandez BS, Koh S, Chial M et al (1997) Terpene utilizing isolates and their relevance to enhanced biotranformation of PCBs in soil. Biodegradation 8:153–158

    CAS  Google Scholar 

  • Hiarishi A (2008) Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. Microbes Environ 23:1–12

    Google Scholar 

  • Hickey WJ, Brenner V, Focht DD (1992) Mineralization of 2-chloro-and 2,5-dichloro-biphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiol Lett 98:175–180

    CAS  Google Scholar 

  • Holscher T, Krajmalnik-Brown R, Ritalahti KM et al (2004) Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70:5290–5297

    PubMed  Google Scholar 

  • Hou LH, Dutta SK (2000) Phylogenetic characterization of several para-and meta-PCB dechlorinating Clostridium species: 16S rDNA sequence analyses. Lett Appl Microbiol 30:238–243

    PubMed  CAS  Google Scholar 

  • Ionescu M, Beranova K, Dudkova V, Kochankova L, Demnerova K, Macek T, Mackova M (2009) Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int Biodeterior Biodegrad 63:667–672

    CAS  Google Scholar 

  • Jota MAT, Hassett JP (1991) Effects of environmental variables on binding of a PCB congener by dissolved humic substances. Environ Toxicol Chem 10:483–491

    Google Scholar 

  • Kikuchi Y, Yasukochi Y, Nagata Y et al (1994) Nucleotide sequence and functional analysis of the meta-cleavage pathway involved in biphenyl and polychlorinated biphenyl degradation in Pseudomonas sp. strain KKS102. J Bacteriol 176:4269–4276

    PubMed  CAS  Google Scholar 

  • Kim S, Picardal F (2001) Microbial growth on dichlorobiphenyls chlorinated on both rings as a sole carbon and energy source. Appl Environ Microbiol 67:953–1955

    Google Scholar 

  • Kimbara K, Hashimoto T, Fukuda M et al (1989) Cloning and sequencing of two tandem genes involved in degradation of 2,3-dihydroxybiphenyl to benzoic acid in the polychlorinated biphenyl-degrading soil bacterium Pseudomonas sp. strain KKS102. J Bacteriol 171:2740–2747

    PubMed  CAS  Google Scholar 

  • Klasson KT, Barton JW, Evans BS et al (1996) Reductive microbial dechlorination of indigenous polychlorinated biphenyls in soil using a sediment-free inoculum. Biotechnol Prog 12:310–315

    PubMed  CAS  Google Scholar 

  • Krone UE, Thauer RK, Hogenkamp HPC (1989) Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914

    CAS  Google Scholar 

  • Lambo AJ, Patel TR (2006) Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor 1221. J Basic Microbiol 46:94–107

    PubMed  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyls (PCB)-degrading bacteria associated with the trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    PubMed  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148

    PubMed  CAS  Google Scholar 

  • Ling-Yun J, Zheng AP, Xu L et al (2008) Isolation and characterization of comprehensive polychlorinated biphenyl-degrading bacterium, Enterobacter sp. LY402. J Microbiol Biotechnol 18:952–957

    Google Scholar 

  • Löffler FE, Sun Q, Li J et al (2002) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol 66:1369–1374

    Google Scholar 

  • Lunt D, Evans WC (1970) The microbial metabolism of biphenyl. Biochem J 118:54–55

    Google Scholar 

  • Mackova M, Dowling D, Macek T (eds) (2006) Phytoremediation and rhizoremediation, theoretical background. FOCUS Biotechnol 9A:300 pp (Springer)

    Google Scholar 

  • Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut Res 16:817–829

    CAS  Google Scholar 

  • Masai E, Yamada A, Healy JM et al (1995) Characterization of biphenyls catabolic genes of gram-positive polychlorinated biphenyls degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085

    PubMed  CAS  Google Scholar 

  • Mavoungou R, Masse R, Sylvestre M (1991) Microbial dehalogenation of 4, 4′-dichlorobiphenyl under anaerobic conditions. Sci Total Environ 101:263–268

    PubMed  CAS  Google Scholar 

  • May HD, Cutter LA, Miller GS et al (2006) Stimulatory and inhibitory effects of organohalides on the dehalogenating activities of PCB-dechlorinating bacterium o-17. Environ Sci Technol 40:5704–5709

    PubMed  CAS  Google Scholar 

  • Michel FC, Quensen J, Reddy CA (2001) Bioremediation of a PCB-contaminated soil via ­composting. Compost Sci Util 9:274–283

    Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    PubMed  CAS  Google Scholar 

  • Mondello FJ (1989) Cloning and expression in Escherichia coli of Pseudomonas strain LB400 genes encoding PCB degradation. J Bacteriol 171:1725–1732

    PubMed  CAS  Google Scholar 

  • Mousa MA, Quensen JF, Chou K et al (1996) Microbial dechlorination alleviates inhibitory effects of PCBs on mouse gamete fertilization in vitro. Environ Sci Technol 30:2087–2092

    CAS  Google Scholar 

  • Mouz S, Merlin C, Springael D et al (1999) A GntR-like negative regulator of the biphenyl ­degradation genes of the transposon Tn4371. Mol Gen Genet 262:790–799

    PubMed  CAS  Google Scholar 

  • Nies L, Vogel TM (1990) Effects of organic substrates on dechlorination of Aroclor-1242 in anaerobic sediments. Appl Environ Microbiol 56:2612–2617

    PubMed  CAS  Google Scholar 

  • Ofjord GD, Puhakka JA, Ferguson JF (1994) Reductive dechlorination of aroclor 1254 by marine sediment cultures. Environ Sci Technol 28:2286–2294

    Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M et al (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol 65:250–258

    PubMed  CAS  Google Scholar 

  • Péloquin L, Greer CW (1993) Cloning and expression of the polychlorinated biphenyl-­degradation gene cluster from Arthrobacter M5 and comparison to analogous genes from gram-negative bacteria. Gene 125:35–40

    PubMed  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

    PubMed  CAS  Google Scholar 

  • Pieper DH, Seeger M (2008) Bacterial metabolism of polychlorinated biphenyls. J Mol Microbiol Biotechnol 15:121–138

    PubMed  CAS  Google Scholar 

  • Quensen JF III, Boyd SA, Tiedje JM et al (1992) Expected dioxin-like toxicity reduction as a result of the dechlorination of Aroclors. In: General electric company research and development program for the destruction of PCBs, eleventh progress report. General Electric Corporate Research and Development, Schenectady, NY, pp 189–196

    Google Scholar 

  • Quensen JF III, Tiedje JM, Boyd SA (1988) Reductive dechlorination of PCBs by anaerobic microorganisms from sediments. Science 242:752–754

    PubMed  CAS  Google Scholar 

  • Quensen JF III, Boyd SA, Tiedje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Environ Microbiol 56:2360–2369

    PubMed  CAS  Google Scholar 

  • Quensen JF, Mueller SA, Jain MK et al (1998) Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science 280:722–724

    PubMed  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-9O. Chemosphere 69:1221–1227

    PubMed  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J, Ruzickova K (2008) Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ Sci Technol 47:5746–5751

    Google Scholar 

  • Rhee GY, Sokol RC, Bethoney CM et al (1993) A long-term study of anaerobic dechlorination of PCB congeners by sediment microorganisms – pathways and mass-balance. Environ Toxicol Chem 12:1829–1834

    CAS  Google Scholar 

  • Sakai M, Ezaki S, Suzuki N et al (2005) Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl Microbiol Biotechnol 68:111–116

    PubMed  CAS  Google Scholar 

  • Seeger M, Timmis KN, Hofer B (1995) Degradation of chlorobiphenyls catalyzed by the ­bph-encoded biphenyl-2, 3-dioxygenase and biphenyl-2, 3-dihydrodiol-2, 3-dehydrogenase of Pseudomonas sp. LB400. FEMS Microbiol Lett 133:259–264

    PubMed  CAS  Google Scholar 

  • Seeger M, Timmis KN, Hofer B (1997) Bacterial pathways for the degradation of polychlorinated biphenyls. Mar Chem 58:327–333

    CAS  Google Scholar 

  • Seeger M, Zielinski M, Timmis KN et al (1999) Regiospecificity of dioxygenation of di- to ­pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl Environ Microbiol 65:3614–3621

    PubMed  CAS  Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E et al (2000) Biodegradation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Environ Microbiol 54:838–843

    CAS  Google Scholar 

  • Springael D, Kreps S, Mergeay M (1993) Identification of a catabolic transposon, Tn4371, ­carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 175:1674–1681

    PubMed  CAS  Google Scholar 

  • Suenaga H, Watanabe T, Sato M et al (2002) Alteration of regiospecificity in biphenyl ­dioxygenase by active-site engineering. J Bacteriol 184:3682–3688

    PubMed  CAS  Google Scholar 

  • Sylvestre M, Macek T, Mackova M (2009) Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 20:242–247

    PubMed  CAS  Google Scholar 

  • Tiedje JM, Quensen JF III, Chee-Sanford J et al (1993–1994) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    CAS  Google Scholar 

  • Triska J, Kuncova G, Mackova M et al (2004) Isolation and identification of intermediates from biodegradation of low chlorinated biphenyls (Delor 103). Chemosphere 54:725–733

    PubMed  CAS  Google Scholar 

  • Tucker ES, Litschgi WJ, Mees WM (1975) Migration of polychlorinated biphenyls in soil induced by percolating water. Bull Environ Contam Toxicol 13:86–93

    PubMed  CAS  Google Scholar 

  • Uhlik O, Jecna K, Leigh MB, Mackova M, Macek T (2009a) DNA-based stable isotope probing: a link between community structure and function. Sci Total Environ 407:3611–3619

    PubMed  CAS  Google Scholar 

  • Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, Paces V, Macek T (2009b) Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol 75:6471–6477

    PubMed  CAS  Google Scholar 

  • Van Dort HM, Bedard DL (1991) Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl Environ Microbiol 57:1576–1578

    PubMed  Google Scholar 

  • Van Dort HM, Smullen LA, May RJ et al (1997) Priming meta-dechlorination of PCB that have persisted in Housatonic River sediments for decades. Environ Sci Technol 31:3300–3307

    Google Scholar 

  • Watts JEM, Wu Q, Schreier SB et al (2001) Comparative analysis of PCB-dechlorinating ­communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3:710–719

    PubMed  CAS  Google Scholar 

  • Wiegel J, Wu QZ (2000) Microbial reductive dehalogenation of PCB. FEMS Microbiol Ecol 32:1–15

    PubMed  CAS  Google Scholar 

  • Williams WA (1994) Microbial reductive dechlorination of trichlorobiphenyls in anaerobic ­sediment slurries. Environ Sci Technol 28:630–635

    PubMed  CAS  Google Scholar 

  • Wu Q, Bedard DL, Wiegel J (1997) Temperature determines the pattern of anaerobic microbial dechlorination of Aroclor 1260 primed by 2,3,4,6-Tetrachlorobiphenyl in woods pond ­sediment. Appl Environ Microbiol 63:4818–4825

    PubMed  CAS  Google Scholar 

  • Wu Q, Bedard DL, Wiegel J (1999) 2, 6-Di bromobiphenyl primes extensive dechlorination of Aroclor 1260 in contaminated sediment at 8–30EC by stimulating growth of PCB-dehalogenating microorganisms. Environ Sci Technol 33:595–602

    CAS  Google Scholar 

  • Wu Q, Joy EM, Watts K et al (2002) Identification of a bacterium that specifically catalyzes the reductive dechlorination of polychlorinated biphenyls with doubly flanked chlorines. Appl Environ Microbiol 68:807–812

    PubMed  CAS  Google Scholar 

  • Yan T, Lapara TM, Novak PJ (2006a) The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbiol Ecol 55:248–261

    PubMed  CAS  Google Scholar 

  • Yan T, LaPara TM, Novak PJ (2006b) The impact of sediment characteristics on PCB-dechlorinating cultures: implications for bioaugmentation. Biorem J 10:143–151

    CAS  Google Scholar 

  • Ye DE, Quensen JF, Tiedje JM et al (1992) Anaerobic dechlorination of polychlorobiphenyls (Aroclor-1242) by pasteurized and ethanol-treated microorganisms from sediments. Appl Environ Microbiol 58:1110–1114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to GACR 525/09/1058 and MSMT NPVII 2B06156, 2B08031, MSM 6046137305, Z 40550506, TANDEM FT-TA4/101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Macek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Mackova, M. et al. (2010). Bacterial Degradation of Polychlorinated Biphenyls. In: Barton, L., Mandl, M., Loy, A. (eds) Geomicrobiology: Molecular and Environmental Perspective. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9204-5_16

Download citation

Publish with us

Policies and ethics