Skip to main content

Part of the book series: Integrated Management of Plant Pests and Diseases ((IMPD,volume 5))

Abstract

Herbivory, the act of consumption of plant biomass by specialist animals, regulates the cycling of biotic and abiotic ecosystem components, through a complex process transferring materials among various trophic levels. Herbivores include insects and mammals of varying sizes, the former being most important due to their high diversity. Insects consume the biomass in varying proportions, depending on their size and density. Apparent checks and balances between prey and predators or hosts and parasites are chemically governed functions. Plants and herbivores receive and send signals to each other as well as to organisms in higher trophic levels (predators) through volatile chemicals. Besides several morphological defence mechanisms, plants evolved specific chemical defences against insects. Among herbivores, insects also co-evolved mechanisms to overcome the volatile chemical arsenals of plants. In this review the role of plant defense against insect herbivory is discussed. The plant responses to repel insects and the synthesis of volatile chemicals to attract predatory insects or parasites are reviewed. Plants evolved genes (activated on insect attack) inducing the secretion of volatile chemicals. Such signalling attracts predators or parasites and is absent in plants when they are experimentally injured. Signalling is caused by the reaction with elicitors contained in the oral secretions of herbivorous insect. Through chemically operated keys, plants and insects regulate ecosystem functioning, allowing co-existence in wild and natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A. A. (1999). Induced responses to herbivory in wild radish, effect on several herbivores and plant fitness. Ecology, 80, 1713–1723.

    Article  Google Scholar 

  • Arimura, G. I., Ozawa, R., Shimoda, T., Nishloka, T., Boland, W., & Takabayashi, J. (2000). Herbivory induced volatiles elicit defense genes in lima bean leaves. Nature, 406, 512–515.

    Article  PubMed  CAS  Google Scholar 

  • Atwal, A. S., & Dhaliwal, G. S. (2003). Agricultural pests of South Asia and their management. New Delhi: Kalyani Publishers, 487 pp.

    Google Scholar 

  • Bartlet, E., Kiddle, G., Williams, I., & Wallsgrove, R. (1999). Wound induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist. Entomologia Experimentalis et Applicata, 91, 163–167.

    Article  CAS  Google Scholar 

  • Belovsky, E. G., & Slade, B. J. (2000). Insect herbivory accelerates nutrient cycling and increases plant production. Proceedings of the National Academy of Sciences, (USA), 97, 14412–14417.

    Article  CAS  Google Scholar 

  • Brewer, G. J. (2001). Ecological basis of pest management. Available online at: http://www.ndsu.nodak.edu/entomology/topics/ipm.htm

  • Briggs, M. A. (1990). Relation of Spodoptera eridania choice to tannins and protein of Lotus corniculatus. Journal of Chemical Ecology, 16, 1557–1564.

    Article  CAS  Google Scholar 

  • Broadway, R. M., Duffey, S. S., Dearce, G., & Ryan, C. A. (1986). Plant proteinase inhibitors a defense against herbivorous insect. Entomologia Experimentis et Applicata, 41, 33–38.

    Article  CAS  Google Scholar 

  • Bruce, T. J. A., & Pickett, J. A. (2007). Plant defense signalling induced by biotic attacks. Current Opinion in Plant Biology, 10, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Coley, P. D. (1983). Intrapsecific variation in herbivory on 2 tropical tree species. Ecology, 64, 426–433.

    Article  Google Scholar 

  • Conconi, A., Miquel, M., Browse, J. A., & Ryan, C. A. (1996). Intracellular levels of free linolenic and linolenic acids increase in tomato leaves in response to wounding. Plant Physiology, 111, 797–803.

    PubMed  CAS  Google Scholar 

  • Cui, J., Bahrami, A. K., Pringle, E. G., Hernandez, G. G., Bender, C. L., Pierce, N. E., & Ausubel, F. M. (2005). Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences, (USA), 102, 1791–1796.

    Article  CAS  Google Scholar 

  • De Moraes, C. M., Mescher, M. C., & Tumlinson, J. H. (2001). Caterpillar induced nocturnal plant volatiles repel conspecific females. Nature, 410, 577–580.

    Article  PubMed  CAS  Google Scholar 

  • Devoto, A. I., Ellis, C., Magusin, A., Chang, H. S., Chilcott, C., Zhu, T., & Turner, J. G. (2005). Expression profiling reveals COII to be a key regulator of genes involved in wound and methyl jasmonate induced secondary metabolism, defense and hormone interactions. Plant Molecular Biology, 58, 497–513.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M., Gols, R., Ludeking, D. & Posthumus, M. A. (1999). Jasmonic acid and herbivory differentially induce carnivore attracting plant volatiles in Lima bean plants. Journal of Chemical Ecology, 25,1907–1922.

    Article  CAS  Google Scholar 

  • Ehrlich, P. R. & Ehrlich, A. H. (1970). Population, Resources, Environment (383pp). San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Eisner, T., Eisner, M., & Hoebeke, R. E. (1998). When defense backfires: Detrimental effect of a plant’s protective trichomes on an insect beneficial to the plant. Proceedings of the National Academy of Science, (USA), 95, 4410–4414.

    Article  CAS  Google Scholar 

  • Elliot, S. L., Sabelis, M. W., Janssen, A. Van der Geest L. P. S., & Berling, E. A. M. (2000). Can plants use entomopathogens as bodygruards? Ecology Letters, 3, 228–235.

    Article  Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences (USA), 101, 1781–1785.

    Article  CAS  Google Scholar 

  • Farha-Rehman (2008). Studies on plant signals and responses to herbivory. Unpublished M.Phil. dissertation, A.M.U. Aligarh.

    Google Scholar 

  • Farmer, E. E. (1997). New fatty acid based signals: A lesson from the plant world. Science (USA), 276, 912–913.

    CAS  Google Scholar 

  • Ferry, N., Edwards, G. M., Gatehouse, A. J., & Gatehouse, A. M. R. (2004). Plant-insect interactions: Molecular approaches to insect resistance. Current Opinion in Biotechnology, 15, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Franceschi, V. R., & Grimes, H. D. (1991). Induction of soybean vegetative storage proteins and anthocyanins by low level atmospheric methyl jasmonate. Proceedings of the National Academy of Sciences, 88, 6745–6749.

    Article  CAS  Google Scholar 

  • Gange, A. C., & Brown, V. K. (1989). Insect herbivory affects size variability in plant populations. Oikos, 56, 351–356.

    Article  Google Scholar 

  • Griswold, C. L. (1953). Transmission of the oak wilt fungus by the panace fly. Journal of Economic Entomology, 46, 1099–1100.

    Google Scholar 

  • Haglund, M. B. (1980). Proline and valine cues which stimulate grasshopper herbivory during drought stress. Nature, 288, 697–698.

    Article  CAS  Google Scholar 

  • Haq, K. S., Atif, M. S., & Khan, H. R. (2004). Protein proteinase inhibitor genes in combat against insects, pests and pathogens natural and engineered phytoprotection. Archives of Biochemistry and Biophysics, 431, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M. (2004). Induction of two indirect defenses benefits lima bean (Phaseolus lunatus Fabaceae) in nature. Journal of Ecology, 92, 527–536.

    Article  Google Scholar 

  • Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores. Annual Review of Plant Biology, 59, 41–66.

    Article  PubMed  CAS  Google Scholar 

  • Janick, J., Schery, R. W., Woods, F. W., & Ruttan, V. W. (1974). Plant sciences: Introduction to world crops. (2nd Ed.). San Francisco, CA: W. H. Freeman.

    Google Scholar 

  • Jones, C. G., Hess, T. A., Whitman, D. W., Silk, P. J., & Blum, M. S. (1987). Effects of diet breadth on autogenous chemical defense of a generalist grasshopper. Journal of Chemical Ecology, 13, 283–298.

    Article  CAS  Google Scholar 

  • Journet, P. R. A. (1981). Insect herbivory on the Australian woodland eucalpyt Eucalyptus blakelyi. Australian Journal of Ecology, 6, 135138.

    Google Scholar 

  • Julien, M. H., & Bourne, A. S. (1988). Effects of leaf-feeding by larvae of the moth Samea multiplicalis Guen. (Lep., Pyralidae) on the floating weed Salvinia molesta. Journal of Applied Entomology 106, 518–526.

    Article  Google Scholar 

  • Karban, R., & Niiho, C. (1995). Induced resistance and susceptibility to herbivory: Plant memory and altered plant development. Ecology 76, 1220–1225.

    Article  Google Scholar 

  • Konno, K., Ono, H., Nakamura, M., Tateishi, K., Hirayama, C., Tamura, Y. et al. (2006). Mulberry latex rich in antidiabetic sugar mimic alkaloids forces dieting on caterpillars. Proceedings of the National Academy of Science (USA) 103, 1337–1341.

    Article  CAS  Google Scholar 

  • Kormondy, E. J. (2003). Population growth and structure-concepts of ecology. (4 ed. New Delhi: Prentice Hall of India Private Limited.

    Google Scholar 

  • Labandeira, C. C., Dilcher, L. D., Davis, R. V., & Wagner, L. D. (1994). Ninety seven million years of angiosperm insect association paleobiological insights into the meaning of coevolution. Proceeding of the National Academy of Science. (USA) 91, 12278–12282.

    Article  CAS  Google Scholar 

  • Lowman, M. D., & Box, J. D. (1983). Variation in leaf toughness and phenolic content among 5 species of Australian rain forest trees. Australian Journal of Ecology 8, 17–26.

    Article  CAS  Google Scholar 

  • Mattiacci, L., Dicke, M., & Posthumus, M. A. (1995). Beta-glucosidase: An elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proceedings of the National Academy of Sciences, USA 92, 2036–2040

    Article  CAS  Google Scholar 

  • McCloud, E. S., & Baldwin, I. T. (1997). Herbivory and caterpillar regurgitants amplify the wound induce increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta Heidelberg, 203, 430–435.

    Article  CAS  Google Scholar 

  • McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., & Browse, J. (1997). Jasmonate is essential for insect defense in Arabidopsis. Proceeding of the National Academy of Sciences. (USA), 94, 5473–5477.

    Article  CAS  Google Scholar 

  • Ode, P. J. (2006). Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annual Review of Entomology, 51, 163–85.

    Article  PubMed  CAS  Google Scholar 

  • Ohgushi, T. (2005). Indirect interaction webs: Herbivore-induced effects through trait change in plants. Annual Review of Ecological System, 36, 81–105.

    Article  Google Scholar 

  • Pare, W. P., Alborn, T. H., & Tumlinson, H. J. (1998). Concerted biosynthesis of an insect elicitor of plant volatiles. Plant Biology, 95, 13971–13975.

    CAS  Google Scholar 

  • Pechan, T., Cohen, A., Williams, P. W., & Luthe, S. D. (2002). Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proceedings of the National Academy of Sciences, (USA), 99, 13319–13323.

    Article  CAS  Google Scholar 

  • Pontoppidan, B., Hopkins, R., Rask, L., & Meijer, J. (2005). Differential wound induction of the myrosinase system in oilseed rape (Brassica napus) contrasting insect damage with mechanical damage. Plant Science, 168, 715–722.

    Article  CAS  Google Scholar 

  • Price, P. W., et al. (1980). Interactions among three trophic levels: Influence of plants on interaction between insect herbivores and natural enemies. Annual Review of Ecological Systems, 11, 41–65.

    Article  Google Scholar 

  • Rangaswami, G. (1983). Biodegradation of pesticides. Pesticide Information, 9, 55–63.

    Google Scholar 

  • Ryan, C. A. (2001). Night moves of pregnant moths. Nature, 410, 530–531.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., Banchio, E., & Tumlinson, J. H. (2003a). Quantitative relationship between induced jasmonic acid levels and volatiles emission in Zea mays during Spodoptera exigua herbivory. Planta, 216, 665–673.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., & Tumlinson, J. H. (2003b). Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect induced volatile emission in Zea mays. Physiologia Plantarum, 117, 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Carroll, J. M., Leclere, S., Phipps, M. S., Meredith, J., Chourey, S. P., et al. (2006). Fragments of ATP synthase mediate plant perception of insect attack. Proceedings of the National Academy of Sciences, USA, 103, 8894–8899.

    Article  CAS  Google Scholar 

  • Simonetti, A. J., Grez, A. A., Celis, D. L. J., & Bustamante, O. R. (2007). Herbivory and seedling performance in a fragmented temperate forest of Chile. Acta Oecologica, 32, 312–318.

    Article  Google Scholar 

  • Stamp, N. E. (1987). Availability of resources for predators of chelone seeds and their parasitoids. American Midland Naturalist, 117, 265–279.

    Article  Google Scholar 

  • Takabayashi, J., & Dicke, M. (1996). Plant carnivore mutalism through herbivore induced carnivore attractants. Trends in Plant Sciences, 1, 109–113.

    Article  Google Scholar 

  • Thaler, J. S. (1999a). Induced resistance in agricultural crops: Effect of jasmonic acid on herbivory and yield in tomato plants. Environmental Entomology, 28, 30–37.

    CAS  Google Scholar 

  • Thaler, J. S. (1999b). Jasmonate inducible plant defenses causes increased parasitism of herbivores. Nature, 399, 686–687.

    Article  CAS  Google Scholar 

  • Thaler, J. S., Farag, M. A., Parepaul, W., & Dicke, M. (2002). Jasmonate deficient plants have reduced direct and indirect defenses against herbivores. Ecology Letters, 5, 764–774.

    Article  Google Scholar 

  • Thaler, J. S., Stout, M. J., Karban, R., & Duffey, S. S. (2001). Jasmonate mediated induced plant resistance affects a community of herbivores. Ecological Entomology, 26, 312–324.

    Article  Google Scholar 

  • Trotter, T. R., III, Cobb, S. N., & Whitham, G. T. (2002). Herbivory, plant resistance and climate in the tree ring record: Interaction distort climatic reconstruction. Proceedings of the National Academy of Sciences (USA), 99, 10197–10202.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J. Tumlinson, J. H., & Lewis, W. J. (1990). Exploitation of herbivore induced plant odors by host-seeking parasitic wasps. Science, 250, 1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Van Kleunen, M., Ramponi, G., & Schmid, B. (2004). Effects of herbivory simulated by clipping and jasmonic acid on Solidago Canadensis. Basic and Applied Ecology, 5, 173–181.

    Article  Google Scholar 

  • Van Poecke, R. M. P., & Dicke, M. (2004). Indirect defense of plants against herbivores using Arabidopsis thaliana as a model plant. Plant Biology, 6, 387–401.

    Article  PubMed  CAS  Google Scholar 

  • Van Poecke, R. M. P., Posthumus, M. A., & Dicke, M. (2001). Herbivore induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula chemical behavioural and gene expression analysis. Journal of Chemical Ecology, 27, 1911–1928.

    Article  PubMed  Google Scholar 

  • Van Poecke, R. M. P., Roosjen, M., Pumarino, L., & Dicke, M. (2003). Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non-host herbivore species. Entomologia Experimentalis et Applicata, 107, 229–236.

    Article  Google Scholar 

  • Viswanathan, D. V., Narwani, A. J. T., & Thaler, J. S. (2005). Specificity in induced plant responses shapes pattern of herbivore occurrence on Solanum dulcamara. Ecology, 86, 886–896.

    Article  Google Scholar 

  • Walling, L. L. (2000). The myriad plant response to herbivores. Journal of Plant Growth Regulation, 19, 195–216.

    PubMed  CAS  Google Scholar 

  • Williams, J. E. (1990). The importance of herbivory in the population dynamics of three sub-Alpine eucalpyts in Brindabella range South-East Australia. Australian Journal of Ecology, 15, 51–56.

    Article  Google Scholar 

  • Williams, K. S., & Myers, J. H. (1984). Previous herbivore attack of red alder Alnus rubra may improve food quality for fall webworm Hyphantria cunea larvae. Oecologia, 63, 166–170.

    Article  Google Scholar 

  • Wittstock, U., Agerbirk, N., Stauber, J. E., Olsen, E. C., Hippler, M. O. M. T., Gershenzon, J. et al. (2004). Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceeding of the National Academy of Sciences, (USA), 101, 4859–4864.

    Article  CAS  Google Scholar 

  • Woodman, R. L., & Fernandes, G. W. (1991). Differential mechanical defense herbivory evapotranspiration and leaf hairs. Oikos, 60, 11–19.

    Article  Google Scholar 

  • Yan, G. Z., & Wang, Z. C. (2006). Wound induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry, 62, 34–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Departments of Botany and Zoology, Aligarh Muslim University for necessary facilities, and funding agencies for financial assistance. Farha-Rehman acknowledges U.G.C. for research fellowship. S.M.A. Badruddin thanks ICAR for funding through the “Network Project on Insect Biosystematics”.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Farha-Rehman, Khan, F.A., Anis, S.B., Badruddin, S.M.A. (2010). Plant Defenses Against Insect Herbivory. In: Ciancio, A., Mukerji, K. (eds) Integrated Management of Arthropod Pests and Insect Borne Diseases. Integrated Management of Plant Pests and Diseases, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8606-8_8

Download citation

Publish with us

Policies and ethics