Skip to main content

How Have Genome Studies Improved Our Understanding of Organelle Evolution and Metabolism in Red Algae?

  • Chapter
  • First Online:
Red Algae in the Genomic Age

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 13))

Abstract

Genomic studies have revealed a lot about the ancestry of genes in red algae, with a bias among the data for the completely sequenced cyanidiophytes with their relatively small genomes, which are probably a result of secondary evolutionary reduction. Genome studies have revealed a number of interesting facets of the metabolism of organelles, and especially the chloroplasts. However, care must be taken not to overinterpret the genomic data, especially for genes whose products can be involved in more than one cellular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archibald, J. (2006) Algal genomics: exploring the imprint of endosymbiosis. Curr. Biol. 16: R1033–R1035

    Article  PubMed  CAS  Google Scholar 

  • Asamizu, E., Nakajima, M., Kitade, Y., Saga, N., Nakamura, Y. and Tabata, S. (2003) Comparison of RNA expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on expressed sequence tag frequency analysis. J. Phycol. 39: 923–930.

    Article  Google Scholar 

  • Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W. and Price, G.D. (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2 concentrating mechanisms in algae. Can. J. Bot. 76: 1052–1071.

    CAS  Google Scholar 

  • Barbier, G. et al. (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism in both algae. Plant Physiol. 127: 460–474.

    Article  Google Scholar 

  • Bhattacharya, D. and Archibald, J.M. (2006) Response to Theissen and Martin, Curr. Biol. 16: 1017–1018.

    Article  Google Scholar 

  • Bourareb, K., Adas, F., Qaquerel, E., Kloareg, B., Salaün, J.-P. and Potin, P. (2004) The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135: 1838-1848.

    Article  Google Scholar 

  • Collén, J., Roeder, V., Rousvoal, S., Collin, O., Kloareg, B. and Boyen, C. (2006) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J. Phycol. 42: 104–112.

    Article  Google Scholar 

  • Cunningham, F.X. Jr., Lee. H. and Gantt, E. (2007) Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot. Cell 6: 533–545.

    Article  PubMed  CAS  Google Scholar 

  • Derelle, E. et al. (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 103: 11647–11652.

    Article  PubMed  CAS  Google Scholar 

  • Durnford, D.G. and Gray, M.W. (2006) Analysis of Euglena gracilis plastid targetted proteins reveals different classes of transit sequences. Eukaryot. Cell 5: 2079–2091.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut, M. et al. (2006) The plant-like C2 cycle and the bacteria-like glycerate pathways cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol. 142: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Engel, C.R., Wattier, R., Destembe, C. and Valero, M. (1999) Performance of non-motile males gametes in the sea: analysis of paternity and fertilization success in natural populations of a red seaweed, Gracilaria gracilis. Proc. R. Soc. Lond. B 266: 1979–1886.

    Article  Google Scholar 

  • Fierst, J., ter Horst, C., Kübler, J.E. and Dudgeon, S. (2005) Fertilization success can drive patterns of phase dominance in complex life histories. J. Phycol. 41: 238–249.

    Article  Google Scholar 

  • Furbank, R.T. and Rebeille, F. (1986) Dark respiration of the marine macroalga Chondrus crispus (Rhodophyceae). Planta 168: 367–372.

    Google Scholar 

  • Galmes, J., Flexas, J., Keys, A.J., Cifre, J., Mitchell, R.A.C., Madgwick, P.J., Haslam, R.P., Medrano, H. and Parry, M.A.J. (2005) Rubisco specificity factor tends to be higher in plant species from drier habitats and with persistent leaves. Plant Cell Environ. 28: 571–579.

    Article  CAS  Google Scholar 

  • Giordano, M., Beardall, J. and Raven, J.A. (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56: 99–131.

    Article  PubMed  CAS  Google Scholar 

  • Gross, W., Lenze, D., Nowitzi, U., Weiske, J. and Schnarrenberger, C. (1999) Characterization, cloning, and evolutionary history of the chloroplast and cytosolic aldolases of the red alga Galdieria suphuraria. Gene 230: 7–14.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, M.W. (1990) Reproductive strategies, In: K.M. Cole and R.G Sheath (eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 455–476.

    Google Scholar 

  • Huang, J. and Gogarten, J.P. (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8: R99, 1–13.

    Google Scholar 

  • Igamberdiev, A.U. and Lea, P.J. (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60: 651–674.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, H.L., Winning, B.M., Millar, A.M., Drincovich, M.F., Andrea, C.S., Flügge, U.-I. and Mauria, V.G. (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol. 139: 39–51.

    Article  Google Scholar 

  • Johnston, A.M. (1991) The acquisition of inorganic carbon by marine macroalgae. Can. J. Bot. 69: 1123–1132.

    Article  CAS  Google Scholar 

  • Kaiser, D. (2001) Building a multicellular organism. Annu. Rev. Genet. 35: 103–123.

    Article  PubMed  CAS  Google Scholar 

  • Kapralov, M.V. and Filatov, D.A. (2007) Widespread positive selection in the photosynthetic Rubisco enzyme. BMC Evol. Biol. 7: Art. No 73.

    Article  PubMed  Google Scholar 

  • Kitade, Y., Asamizu, E., Fukuda, S., Nakajima, M., Ootsuka, O., Endo, H., Tabata, S. and Saga, N. (2008) Identification of genes preferentially expressed during asexual sporulation in Porhyra yezoensis gametophytes (Bangiales, Rhodophyta). J. Phycol. 44: 113–123.

    Article  CAS  Google Scholar 

  • Kremer, B.P. and Küppers, U. (1977) Carboxylating enzymes and pathway of photosynthetic carbon assimilation in different marine algae – evidence for the C4 pathway? Planta 133: 191–196.

    Article  CAS  Google Scholar 

  • Kroth, P.G. et al. (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLOS 1(Issue 1) e1426.

    Google Scholar 

  • Ku, M.S.B., Kano-Murakami, Y. and Matsuoka, M. (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol. 111: 949–957.

    Article  PubMed  CAS  Google Scholar 

  • Larkum, A.W.D. (2007) Evolution of the reaction centres and photosystems, In: G. Renger (ed.) Primary Processes of Photosynthesis: Principles and Applications. Royal Society of Chemistry, Cambridge, pp. 489–521.

    Google Scholar 

  • Larkum, A.W.D., Lockhart, P.J. and Howe, C.J. (2007) Shopping for plastids. Trends Plant Sci. 12: 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H., Lee, H.K., An, G. and Lee, Y.K. (2007) Analysis of expressed sequence tags from the red alga Griffithsia okiensis. J. Microbiol. 45: 541–546.

    PubMed  CAS  Google Scholar 

  • Li, L.A., Gibson, J.L. and Tabita, F.R. (1993) The Rubisco activase (rca) gene is located downstream from rbcS in Anabaena sp. Strain CA and is detected in other Anabaena/Nostoc strains. Plant Mol. Biol. 21: 735–764.

    Article  Google Scholar 

  • Link, M. and Weber, A.P.M. (2005) Shuffling ammonia between mitochondria and plastids during photorespiration. Trends Plant Sci. 10: 461–465.

    Article  Google Scholar 

  • Machida, M. et al. (2006) Genes for the peptidoglycan synthesis pathway are essential for chloroplast division in moss. Proc. Natl. Acad. Sci. USA 103: 6753–6758.

    Article  PubMed  CAS  Google Scholar 

  • Malone, S., Chen, Z.-H., Bahrami, A.R., Walker, R.P., Gray, J.E. and Leegood, R.C. (2007) Phosphoenolpyruvate carboxykinase in Arabidopsis thaliana: change in isoforms and location during vegetative and reproductive development. Plant Cell Physiol. 48: 441–450.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, M. et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653–657.

    Article  PubMed  CAS  Google Scholar 

  • McGinn, P.J. and Morel, F.M.M. (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol. 146: 300–309.

    Article  PubMed  CAS  Google Scholar 

  • McNevin, D.B., Badger, M.R., Whitney, S.M., von Caemmerer, S., Tcherkez, G.G.B. and Farquhar, G.D. (2007) Differences in isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J. Biol. Chem. 282: 36068–36076.

    Article  PubMed  CAS  Google Scholar 

  • Misumi, O. et al. (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies in organelle biogenesis in photosynthetic eukaryotes. Plant Physiol. 137: 567–585.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.B. et al. (2008) A photosynthetic alveolate closely related to apicomplexan parasites, Nature 451: 959–963.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, I., Asamizu, E., Nakajima, M., Nakamura, Y., Saga, N. and Tabata, S. (2000) Generation of 10, 154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res. 7: 223–227.

    Article  PubMed  Google Scholar 

  • Nowack, E.C.M., Melkonian, M. and Glöckner, G. (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18: 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Oborník, M. and Green, B.R. (2005) Mosaic origin of the heme biosynthesis in photosynthetic eukaryotes. Mol. Biol. Evol. 22: 2342–2353.

    Article  Google Scholar 

  • Oesterhelt, O., Klocke, S., Holtgrefe, S., Linke, V., Weber, A.P.M. and Scheibe, R. (2007) Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Plant Cell Physiol. 48: 1359–1373.

    Article  PubMed  CAS  Google Scholar 

  • Parry, M.A.J., Madgwick, P.J., Carvalho, J.F.C. and Andralojc, P.J. (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J. Agric. Sci. 145: 31–43.

    Article  CAS  Google Scholar 

  • Patron, N.J. and Keeling, P.J. (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J. Phycol. 41: 1131–1141.

    Article  CAS  Google Scholar 

  • Pearce, F.G. (2006) Catalytic by-produce formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399: 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Prechtl, J., Kneip, C., Lockhart, P., Wenderoth, K, and Maier, U.-G. (2004) Intracellular spheroidal bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol. Biol. Evol. 21: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  • Raven, J.A. (1997) Inorganic carbon acquisition by marine autotrophs. Adv. Bot. Res. 27: 85–209.

    Article  CAS  Google Scholar 

  • Raven, J.A. (1998a) Phylogeny, palaeoatmospheres and the evolution of phototrophy, In: H. Griffiths (ed.) Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Bios, Oxford, pp. 89–98.

    Google Scholar 

  • Raven, J.A. (1998b) Insects and angiosperm diversity in marine environments: further comments on van der Haage. Funct. Ecol. 12: 977–979.

    Article  Google Scholar 

  • Raven, J.A. (2005) Cellular location of starch synthesis and evolutionary origin of starch genes. J. Phycol. 41: 1070–1072.

    Article  Google Scholar 

  • Raven, J.A. (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth. Res. in press. doi: 10.1007/311120-010-9563-7.

    Google Scholar 

  • Raven, J.A., Ball, L.A., Beardall, J., Giordano, M. and Maberly, S.C. (2005) Algae lacking carbon concentrating mechanisms. Can. J. Bot. 83: 859–864.

    Article  Google Scholar 

  • Raven, J.A., Johnston, A.M. and MacFarlane, J.J. (1990) Carbon metabolism, In: R.G. Sheath and K.M. Cole (eds.) The Biology of the Red Alga. Cambridge University Press, Cambridge, UK, pp. 171–202.

    Google Scholar 

  • Raven, J.A., Beardall, J., Flynn, K.J. and Maberly, S.C. (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J. Exp. Bot. 60: 3975–3987.

    Article  PubMed  CAS  Google Scholar 

  • Reichert, A., Dennes, A., Vetter, S. and Scheibe, R. (2003) Chloroplast fructose 1,6 bisphosphatase with changed redox modulation: comparison of the Galdieria enzyme with cysteine mutants from spinach. Biochem. Biophys. Acta 1645: 212–217.

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto, A., Hackett, J.D., Soares, M.B., Bonaldo, M.F. and Bhattacharya, D. (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16: 2320–2325.

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Prieto, A., Weber, A.P.M. and Bhattacharya. D. (2007) The origin and establishment of the plastid in algae and plants. Annu. Rev. Genet. 41: 147–168.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, K.M. and Raven, J.A. (1984) Dinophyte flagella – a cost-benefit analysis. New Phytol. 98: 250–276.

    Google Scholar 

  • Roberts, K., Granum, E., Leegood, R.C. and Raven, J.A. (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol. 145: 230–235.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M. and Keeling, P.J. (2004) Lateral transfer and recompartmentalization of Calvin cycle enzymes of plants and algae. J. Mol. Evol. 58: 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Sato, N. and Moriyama, T. (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot. Cell 6: 1006–1017.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, C.J., Hsu, M., Meisak, B. and Coruzzi, G.M. (1998) Arabidopsis mutants define an in vivo role for isoenzymes of aspartate aminotransferase in plant nitrogen assimilation. Genetics 149: 491–499.

    PubMed  CAS  Google Scholar 

  • Seckbach, J., Gonzalea, E., Wainwright, I.M. and Gross, W. (1992) Peroxisomal function in the Cyanidiophyceae (Rhodophyta) – a discussion of phylogenetic relationships and the evolution of mcrobodies (peroxisomes). Nova Hedwigia 55: 99–109.

    Google Scholar 

  • Shchepinov, M.S. (2007) Do ‘heavy’ eaters live longer? BioEssays 19: 1247–1256.

    Article  Google Scholar 

  • Soon, H.S. et al. (2008) Broadly sampled multigene trees of eukaryotes. BMC Mol. Biol. 8: 14, doi:10.1186/1471-2148-8-14

    Google Scholar 

  • Spreitzer, R.J. and Salvucci, M.E. (2002) RUBISCO: regulatory interactions, and possibilities for a better enzyme. Annu. Rev. Plant Biol. 53: 449–475.

    Article  PubMed  CAS  Google Scholar 

  • Stabenau, H. and Säftel, W. (1992) Peroxisome of Rhodophyta, In: H Stabenau (ed.) Phylogenetic Changes in Peroxisomes of Algae. Phylogeny of Plant Peroxisomes. University of Oldenburg, Oldenburg, Germany, pp. 106–111.

    Google Scholar 

  • Stiller, J.W. and Hall, B.D. (1997) The orgins of red algae: implications for plastid evolution. Proc. Natl. Acad. Sci. USA 94: 4520–4525.

    Article  PubMed  CAS  Google Scholar 

  • Stiller, J.W., Reel, D.C. and Johnson, J.C. (2003) A single origin of plastids revisited: convergetnt evolution in organellar genome content. J. Phycol. 39: 95–105.

    Article  CAS  Google Scholar 

  • Stiller, J.W. and Harrell, L. (2005) The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phyologeny. BMC Evol. Biol. 5: 71, doi: 10.1186/1471-2148-5-71

    Article  PubMed  Google Scholar 

  • Tcherkez, G.G.B., Farquhar, G.D. and Andrews, T.J. (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carbonxylases may be nearly perfectly optimised. Proc. Natl. Acad. Sci. USA. 103: 7246–7251.

    Article  PubMed  CAS  Google Scholar 

  • Teo, S.-S., Lo, C.-L., Teoh, S., Lee, W.-W., Tee, J.-M., Rahim, R.A. and Phang, S.-M. (2007) Analyses of expressed sequence tags from an agarophyte, Gracilaria changii (Gracilariales, Rhodophyta). Eur. J. Phycol. 42: 41–46.

    Article  CAS  Google Scholar 

  • Theissen, U. and Martin, W. (2006) The difference between organelles and endosymbionts. Curr. Biol. 18: R1016–R1017

    Article  Google Scholar 

  • Terashima, M., Maruyama, S. and Tanaka, K. (2006) Cytoplasmic location of the single glutamine synthetase in a unicellular red alga, Cyanidioschyzon merolae 10D. Biosci. Biotechnol. Biochem. 70: 2313–2315.

    Article  Google Scholar 

  • Tischendorf, G., Oesterhelt, C., Hoffmann, S., Girnus, J., Scharrenberger, C. and Gross, W. (2007) Ultrastucture and enzyme complement of proplastids from heterotrophically grown cells of the red alga Galdieria sulphuraria. Eur. J. Phycol. 42: 243–251.

    Article  CAS  Google Scholar 

  • Wheeler, M.C.G., Tronconi, M.A., Drincovich, M.F., Andreo, C.S., Flügge, U.-I. and Maurino, V.G. (2001a) NAD Malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol. 126: 1139–1149.

    Article  Google Scholar 

  • Wheeler, M.C.G., Tronconi, M.A., Drincovich, M.F., Andreo, C.S., Flugge, U.-I. and Maurino, V.G. (2001b) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol. 139: 39–51.

    Article  Google Scholar 

  • Whitney, S.M., Baldet, P., Hudson, G.S. and Andrews, T.J. (2001) Form I Rubisco from non-green algae are expressed abundantly but not expressed in tobacco chloroplasts. Plant J. 26: 535–547.

    Article  PubMed  CAS  Google Scholar 

  • Wickstead, B. and Gull, K. (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8: 1708–1721.

    Article  PubMed  CAS  Google Scholar 

  • Xiaolei, F., Yongjun, F., Songnian, H. and Guangce, W. (2007) Generation and analysis of 5318 expressed sequence from the filamentous sporophyte of Porphyra haitanensis (Rhodophyta). J. Phycol. 43: 1287–1294.

    Article  Google Scholar 

  • Zhu, X.G., Portis, A.R.Jr and Long, S.P. (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ. 27: 155–165.

    Article  CAS  Google Scholar 

  • Zou, D.H. and Gao, K.S. (2002a) Photosynthetic bicarbonate utilization in Porphyra haitanensis (Bangiales, Rhodophyta). Chin. Sci. Bull. 47: 1629–1633.

    CAS  Google Scholar 

  • Zou, D.H. and Gao, K.S. (2002b) Effects of desiccation and CO2 concentration on emersed photosynthesis in Porphyra haitanensis (Bangiales, Rhodophyta), a species farmed in China. Eur. J. Phycol. 37: 587–592.

    Article  Google Scholar 

  • Zou, D.H. and Gao, K.S. (2004) Exogenous carbon acquisition of photosynthesis in Porphyra haitanesis (Bangiales, Rhodophyta) under emersed state. Progr. Natural Sci. 14: 138–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Raven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Raven, J.A. (2010). How Have Genome Studies Improved Our Understanding of Organelle Evolution and Metabolism in Red Algae?. In: Seckbach, J., Chapman, D. (eds) Red Algae in the Genomic Age. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3795-4_15

Download citation

Publish with us

Policies and ethics