Skip to main content

Chromatin Assembly and Signalling the End of DNA Repair Requires Acetylation of Histone H3 on Lysine 56

  • Chapter
  • First Online:
Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

The packaging of DNA into chromatin results in a barrier to all DNA transactions. To facilitate transcription, replication and repair histone proteins are frequently post-translational modified. Such covalent additions to histone residues can modulate chromatin folding and/or provide specificity to docking surfaces for non-histone chromatin proteins. In the budding yeast, one such modification, transient acetylation of histone H3 on residue lysine 56 (H3K56ac); occurs on newly synthesized H3 molecules and facilitates their deposition onto newly replicated DNA during S phase. H3K56ac also has a role in chromatin reassembly following DNA damage in S phase. Importantly, the completion of H3K56ac-dependent chromatin reassembly appears to be required for resumption of cell proliferation after DNA repair. Emerging evidence, although not without conflict, suggests that H3K56ac is not only present in human cells, but is similarly regulated and required for chromatin reassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Asf1:

Anti-Silencing Function 1

CAF-1:

Chromatin Assembly Factor 1

CBP/p300:

CREB Binding Protein/ Histone acetyltransferase p300

CPT:

Camptothecin

DDR:

DNA Damage Response

DSB:

Double Strand Break

FACT:

Facilitates Chromatin Transcription

HAT:

Histone Acetyltransferase

HDAC:

Distone Deacetylase

Hst3/Hst4:

Homologue of Sir2 3/4

MMS:

Methyl Methane-sulfonate

PH:

Pleckstrin Homology

Pob3:

Pol1 Binding 3

Rtt109/Rtt106:

Regulator of Ty1 Transposition 109/106

Sir2:

Silent mating type Information Regulation 2

Top1:

Topoisomerase 1

References

  • Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M., and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature, 419, 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Brachmann, C. B., Sherman, J. M., Devine, S. E., Cameron, E. E., Pillus, L., and Boeke, J. D. (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev, 9, 2888–2902.

    Article  CAS  PubMed  Google Scholar 

  • Celic, I., Masumoto, H., Griffith, W. P., Meluh, P., Cotter, R. J., Boeke, J. D., and Verreault, A. (2006) The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol, 16, 1280–1289.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C. C., Carson, J. J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J. K. (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell, 134, 231–243.

    Article  CAS  PubMed  Google Scholar 

  • Choy, J. S. and Kron, S. J. (2002) NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol, 22, 8215–8225.

    Article  CAS  PubMed  Google Scholar 

  • Das, C., Lucia, M. S., Hansen, K. C., and Tyler, J. K. (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature, 459, 113–117.

    Article  CAS  PubMed  Google Scholar 

  • Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W., and Richmond, T. J. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J Mol Biol, 319, 1097–1113.

    Article  CAS  PubMed  Google Scholar 

  • Downs, J. A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S. J., Jackson, S. P., and Cote, J. (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell, 16, 979–990.

    Article  CAS  PubMed  Google Scholar 

  • Downs, J. A., Nussenzweig, M. C., and Nussenzweig, A. (2007) Chromatin dynamics and the preservation of genetic information. Nature, 447, 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Driscoll, R., Hudson, A., and Jackson, S. P. (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science, 315, 649–652.

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio, M., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2005) The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem, 280, 9879–9886.

    Article  CAS  PubMed  Google Scholar 

  • Grenon, M., Costelloe, T., Jimeno, S., O’Shaughnessy, A., Fitzgerald, J., Zgheib, O., Degerth, L., and Lowndes, N. F. (2007) Docking onto chromatin via the Saccharomyces cerevisiae Rad9 Tudor domain. Yeast, 24, 105–119.

    Article  CAS  PubMed  Google Scholar 

  • Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007) Chromatin challenges during DNA replication and repair. Cell, 128, 721–733.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R. M., and Zhang, Z. (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science, 315, 653–655.

    Article  CAS  PubMed  Google Scholar 

  • Huyen, Y., Zgheib, O., Ditullio, R. A., Jr., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., Sheston, E. A., Mellert, H. S., Stavridi, E. S., and Halazonetis, T. D. (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature, 432, 406–411.

    Article  CAS  PubMed  Google Scholar 

  • Hyland, E. M., Cosgrove, M. S., Molina, H., Wang, D., Pandey, A., Cottee, R. J., and Boeke, J. D. (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol, 25, 10060–10070.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg, R. D. and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98, 285–294.

    Article  CAS  PubMed  Google Scholar 

  • Kouzarides, T. (2007) Chromatin modifications and their function. Cell, 128, 693–705.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. E., Paques, F., Sylvan, J., and Haber, J. E. (1999) Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol, 9, 767–770.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell, 134, 244–255.

    Article  CAS  PubMed  Google Scholar 

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389, 251–260.

    Article  CAS  PubMed  Google Scholar 

  • Maas, N. L., Miller, K. M., Defazio, L. G., and Toczyski, D. P. (2006) Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell, 23, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature, 436, 294–298.

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. M., Maas, N. L., and Toczyski, D. P. (2006) Taking it off: regulation of H3 K56 acetylation by Hst3 and Hst4. Cell Cycle, 5, 2561–2565.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. D., Yazgan, O., Ataian, Y., and Krebs, J. E. (2007) Diverse roles for histone H2A modifications in DNA damage response pathways in yeast. Genetics, 176, 15–25.

    Article  CAS  PubMed  Google Scholar 

  • Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q., and Herceg, Z. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol, 8, 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Pommier, Y., Barcelo, J. M., Rao, V. A., Sordet, O., Jobson, A. G., Thibaut, L., Miao, Z. H., Seiler, J. A., Zhang, H., Marchand, C., Agama, K., Nitiss, J. L., and Redon, C. (2006) Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol, 81, 179–229.

    Article  CAS  PubMed  Google Scholar 

  • Qin, S. and Parthun, M. R. (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol, 22, 8353–8365.

    Article  CAS  PubMed  Google Scholar 

  • Recht, J., Tsubota, T., Tanny, J. C., Diaz, R. L., Berger, J. M., Zhang, X., Garcia, B. A., Shabanowitz, J., Burlingame, A. L., Hunt, D. F., Kaufman, P. D., and Allis, C. D. (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A, 103, 6988–6993.

    Article  CAS  PubMed  Google Scholar 

  • Saha, A., Wittmeyer, J., and Cairns, B. R. (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol, 7, 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Schalch, T., Duda, S., Sargent, D. F., and Richmond, T. J. (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature, 436, 138–141.

    Article  CAS  PubMed  Google Scholar 

  • Thaminy, S., Newcomb, B., Kim, J., Gatbonton, T., Foss, E., Simon, J., and Bedalov, A. (2007) Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56. J Biol Chem, 282, 37805–37814.

    Article  CAS  PubMed  Google Scholar 

  • Tjeertes, J. V., Miller, K. M., and Jackson, S. P. (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J, 19, 6141–6149.

    Google Scholar 

  • van Leeuwen, F., Gafken, P. R., and Gottschling, D. E. (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell, 109, 745–756.

    Article  PubMed  Google Scholar 

  • Wysocki, R., Javaheri, A., Allard, S., Sha, F., Cote, J., and Kron, S. J. (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol, 25, 8430–8443.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Zhang, K., and Grunstein, M. (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell, 121, 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Pu, M., Zhang, Z., and Lou, Z. (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle, 8, 1747–1753.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Centre for Chromosome Biology, particularly Andrew Flaus, for their helpful input. TC has received support from the Irish Research Council for Science and Engineering Technology (IRCSET) and Cancer Research Ireland (CRI, grant CR105GRE). Work in the Lowndes’ laboratory is supported by an European Union Sixth Framework Programme Integrated project, “DNA Repair,” contract number 512113 and Science Foundation Ireland Principal Investigator (SFI-PI) Award, 07/IN1/B958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel F. Lowndes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Costelloe, T., Lowndes, N.F. (2010). Chromatin Assembly and Signalling the End of DNA Repair Requires Acetylation of Histone H3 on Lysine 56. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_3

Download citation

Publish with us

Policies and ethics